1 / 12 Association EURATOM-CEA 2004-11-03IAEA 20th Fusion Energy Conference presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto,

Slides:



Advertisements
Similar presentations
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
Advertisements

RF Control of Tokamak Plasma Transport
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
Two-dimensional Structure and Particle Pinch in a Tokamak H-mode
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
1 Global Gyrokinetic Simulations of Toroidal ETG Mode in Reversed Shear Tokamaks Y. Idomura, S. Tokuda, and Y. Kishimoto Y. Idomura 1), S. Tokuda 1), and.
Some results / ideas on the effect of flows D. Strintzi, C. Angioni, A. Bottino, A.G. Peeters.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
Euratom J. Jacquinot, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 1/11/2004 Euratom Steady-State operation of Tokamaks: Key Physics and Technology.
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Intermittent Transport and Relaxation Oscillations of Nonlinear Reduced Models for Fusion Plasmas S. Hamaguchi, 1 K. Takeda, 2 A. Bierwage, 2 S. Tsurimaki,
Fluid vs Kinetic Models in Fusion Laboratory Plasmas ie Tokamaks Howard Wilson Department of Physics, University of York, Heslington, York.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Joaquim Loizu P. Ricci, F. Halpern, S. Jolliet, A. Mosetto
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Calculations of Gyrokinetic Microturbulence and Transport for NSTX and C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory Transport Task Force.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Interplay between energetic-particle-driven GAMs and turbulence D. Zarzoso 15 th European Fusion Theory Conference, Oxford, September CEA, IRFM,
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Internal Transport Barriers and Improved Confinement in Tokamaks (Three possible.
11 Role of Non-resonant Modes in Zonal Flows and Intrinsic Rotation Generation Role of Non-resonant Modes in Zonal Flows and Intrinsic Rotation Generation.
Research activity on the T-10 tokamak G. Kirnev on behalf of T-10 team Nuclear Fusion Institute, RRC “Kurchatov Institute”, Moscow , Russia.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
G.HuysmansETFP2006, Krakow11-13/9/2006 Edge Localised Modes: Theory/Simulation Guido Huysmans Association Euratom-CEA Cadarache, France ETFP2006, Krakow.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Association Euratom-Cea 21 st IAEA FEC, Chengdu, Oct. 2006TH/2-21 Beyond scale separation in gyrokinetic turbulence X. Garbet 1, Y. Sarazin 1,
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
Association EURATOM-CEA Electromagnetic Self-Organization and Turbulent Transport in Tokamaks G. Fuhr, S. Benkadda, P. Beyer France Japan Magnetic Fusion.
EURATOM – MEdC Association Days Magurele, November, 2009 Trapping, transport & turbulence evolution Madalina Vlad Plasma Theory Group National Institute.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
1 Lawrence Livermore National Laboratory Influence of Equilibrium Shear Flow on Peeling-Ballooning Instability and ELM Crash Pengwei Xi 1,2, Xueqiao Xu.
1/1318 th PSI conference – Toledo, May 2008P. Tamain Association EURATOM-CEA 3D modelling of edge parallel flow asymmetries P. Tamain ab, Ph. Ghendrih.
A discussion of tokamak transport through numerical visualization C.S. Chang.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Effects of Flow on Radial Electric Fields Shaojie Wang Department of Physics, Fudan University Institute of Plasma Physics, Chinese Academy of Sciences.
Microscopic Eddys don’t imply gyroBohm Scaling Scan device size while keeping all other dimensionless parameters fixed Turbulence eddy size remains small.
(I) Microturbulence in magnetic fusion devices – New insights from gyrokinetic simulation & theory F. Jenko, C. Angioni, T. Dannert, F. Merz, A.G. Peeters,
Weixing Ding University of California, Los Angeles,USA collaborators: D.L. Brower, W. Bergerson, D. Craig, D. Demers, G.Fiksel, D.J. Den Hartog, J. Reusch,
Multi-scale turbulence experiment in HT-7 takamak Li Yadong Li Jiangang Zhang Xiaodong Ren Zhong Zhang Tou Lin Shiyao and HT-7 Team Institute of plasma.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Summary on transport IAEA Technical Meeting, Trieste Italy Presented by A.G. Peeters.
Princeton Plasma Physics Laboratory Highlights of Theory Accomplishments and Plans Department of Energy Budget Planning Meeting March 13-15, 2001.
Association Euratom-CEA TORE SUPRA EAST, China 07/01/2010Xiaolan Zou1 Xiaolan ZOU CEA, IRFM, F Saint-Paul-Lez-Durance, France Heat and Particle Transport.
Y. Kishimoto 1,2), K. Miki 1), N. Miyato 2), J.Q.Li 1), J. Anderson 1) 21 st IAEA Fusion Energy Conference IAEA-CN-149-PD2 (Post deadline paper) October.
Neoclassical Effects in the Theory of Magnetic Islands: Neoclassical Tearing Modes and more A. Smolyakov* University of Saskatchewan, Saskatoon, Canada,
TTF M. Ottaviani Euratom TORE SUPRA Overview of progress in transport theory and in the understanding of the scaling laws M. Ottaviani EURATOM-CEA,
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
Seminar PPPL, 25 January 2011 Association Euratom-Cea 1 Interplay between neoclassical and turbulent transport on Tore Supra Acknowledgements: J. Abiteboul,
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
G.Y. Park 1, S.S. Kim 1, T. Rhee 1, H.G. Jhang 1, P.H. Diamond 1,2, I. Cziegler 2, G. Tynan 2, and X.Q. Xu 3 1 National Fusion Research Institute, Korea.
IAEA Fusion Energy Conference 2012, 8-13 Oct., San Diego, USA
M. Fitzgerald, S.E. Sharapov, P. Rodrigues2, D. Borba2
8th IAEA Technical Meeting on
Non-linear MHD simulations for ITER
Center for Plasma Edge Simulation
Reduction of ELM energy loss by pellet injection for ELM pacing
(TH/8-1, Jae-Min Kwon et al
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
Presentation transcript:

1 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto, X. Garbet, V. Grangirard, G. Huysmans, P. Kaw,M. Ottaviani, Y. Sarazin University of Provence & Association Euratom-CEA Institute for Plasma Reasearch, India, DIII-D team, USA These contributions have benefitted from the Festival de Théorie held in Aix-en Provence July 2001 & 2003 Next Festival July 2005 presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto, X. Garbet, V. Grangirard, G. Huysmans, P. Kaw,M. Ottaviani, Y. Sarazin University of Provence & Association Euratom-CEA Institute for Plasma Reasearch, India, DIII-D team, USA These contributions have benefitted from the Festival de Théorie held in Aix-en Provence July 2001 & 2003 Next Festival July 2005 Relaxation & Transport in Fusion Plasmas Global, flux driven, 2D & 3D fluid, non-linear simulations of plasma transport Large scale flows, fronts & zonal Relaxation dynamics Scaling parameters & control

2 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Relaxation & Transport in Fusion Plasmas Collision Frequency Effect on Turbulent Transport Gloria Falchetto et al. poster TH/1-3Rd Dynamics of Barrier Relaxation Sadri Benkadda et al. poster TH/1-3Rb ELM control with stochastic transport Marina Bécoulet et al. poster TH/1-3Rc SOL scaling with density front propagation Philippe Ghendrih et al. poster TH/1-3Ra

3 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Zonal Flow Enhancement at low ii ii damped zonal flows  radial transport ii damped zonal flows  radial transport weak damping of zonal flows  shearing = upshift of threshold  T i  reduced transport weak damping of zonal flows  shearing = upshift of threshold  T i  reduced transport *= 3.5 Electrostatic potential *= 0.7 Poloidal section Global, fluid, non-linear 3D ITG turbulence // Landau damping flux driven F inj Global, fluid, non-linear 3D ITG turbulence // Landau damping flux driven F inj G. FalchettoTH/1-3Rd Control parameters F inj & * Control parameters F inj & *

4 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Lower collisionality * = reduced turbulent transport G. FalchettoTH/1-3Rd Similar * effect in SOL turbulent transport Zonal flows versus front propagation Similar * effect in SOL turbulent transport Zonal flows versus front propagation Steady state simulation :  trend with F inj / * Mean shearing rate  T i gradient increase

5 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Front transport in SOL Ballistic motion M  ~ 0.04  ~ 4 % L // ? ( ~ 2.4 m !) Ballistic motion M  ~ 0.04  ~ 4 % L // ? ( ~ 2.4 m !) r   x =  s  t = 600 /  i  x =  s  t = 600 /  i Ph. Ghendrih TH/1-3Ra 2D SOL interchange n / n(r) n(r) Defining a Density Front

6 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference SOL width scaling = balance of diffusive and ballistic région stable  diffusif 2048  s Source Intermittency : Ballistic over-density transport Intermittency : Ballistic over-density transport ballistic Diffusive Ph. Ghendrih TH/1-3Ra Analytical scaling L // 5/8 e-folding length :

7 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference 3D turbulence Resistive ballooning barriers = shear ExB flow driven without zonal flows  prey / predator Transport Barrier & Relaxations S.Benkadda TH/1-3Rb r q = 2.5p (a.u.) r q = 2.5p (a.u.) Relaxation events pressure flux potential fluctuations

8 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Electrostatic Mode at Barrier Location potential fluctuations S.Benkadda TH/1-3Rb  (5,2) mode q / p Pressure gradient r t Barrier extent multiple structures multiple structures Radial ballistic propagation inward & outward Radial ballistic propagation inward & outward

9 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference linear growth + shearing out à la Dupree Transitory growth & stabilization by shear flow Transitory growth & stabilization by shear flow shear  E  ' E x collisional diffusion D coll shear  E  ' E x collisional diffusion D coll  p 0 exp(  t  t 3 /  D 3 ) ~ ~ ~ ~ t 3 shearing out : Dupree time  D   / (D coll  ' E 2 ) 1/3 t 3 shearing out : Dupree time  D   / (D coll  ' E 2 ) 1/3 pp Flux p  p 0 exp(  t  i   t) ~ ~ ~ ~ Doppler effect Linear growth S.Benkadda TH/1-3Rb p 0 effect collisional effect p 0 effect collisional effect ~ ~

10 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Modelling ELM activity DIII-D:# T/1.13MA q 95 =3.8 Ballooning linear growth + 2D transport : SOL = sink Ballooning linear growth + 2D transport : SOL = sink pp t ELM :  B r / B ~10 -2 (n=-10) M. Bécoulet TH/1-3Rc ELM cycle p  

11 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Controlled confinement degradation M. Bécoulet TH/1-3Rc I-coil = 4 kA p   ELM cycle I-coil = 4 kA no ELM pp t p*p* External ~  B r / B ~10 -4 (n=-3)     erg barrier  well  (m 2 s -1 ) Confinement loss  erg controlled Confinement loss  erg controlled

12 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference Large scale flows and Front propagation Zonal Flows : lower *  larger  T i Fronts : SOL width  R 0.63 Dynamics of Barrier Relaxation = time delay growth rate  -1 and velocity shearing-out ELM control by external magnetic perturbation can be made robust confinement penalty is controlled More on Zonal flows : gyrokinetics Large scale flows and Front propagation Zonal Flows : lower *  larger  T i Fronts : SOL width  R 0.63 Dynamics of Barrier Relaxation = time delay growth rate  -1 and velocity shearing-out ELM control by external magnetic perturbation can be made robust confinement penalty is controlled More on Zonal flows : gyrokinetics ELMs, Zonal Flows, Fronts Control of Large Scale Structures TH/P6-7 TH/1-3Rc TH/1-3Rb TH/1-3Rd TH/1-3Ra Posters P3/P4 Posters P3/P4