Modeled radiances, update and summary Brad Pierce (NOAA)

Slides:



Advertisements
Similar presentations
1 1. FY09 GOES-R3 Project Proposal Title Page Title: Trace Gas and Aerosol Emissions from GOES-R ABI Project Type: GOES-R algorithm development project.
Advertisements

A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
Satellite based estimates of surface visibility for state haze rule implementation planning Air Quality Applied Sciences Team 6th Semi-Annual Meeting (Jan.
CO budget and variability over the U.S. using the WRF-Chem regional model Anne Boynard, Gabriele Pfister, David Edwards National Center for Atmospheric.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
A U R A Satellite Mission T E S
15% 1. ABSTRACT We show results from joint TES-OMI retrievals for May, We combine TES and OMI data by linear updates from the spectral residuals.
GEO-CAPE COMMUNITY WORKSHOP MAY Vijay Natraj 1, Xiong Liu 2, Susan Kulawik 1, Kelly Chance 2, Robert Chatfield 3, David P. Edwards 4, Annmarie.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
The Orbiting Carbon Observatory Mission: Effects of Polarization on Retrievals Vijay Natraj Advisor: Yuk Yung Collaborators: Robert Spurr (RT Solutions,
Page 1 1 of 16, NATO ASI, Kyiv, 9/15/2010 Vijay Natraj (Jet Propulsion Laboratory) Collaborators Hartmut Bösch (Univ Leicester) Rob Spurr (RT Solutions)
Comparisons of TES v002 Nadir Ozone with GEOS-Chem by Ray Nassar & Jennifer Logan Thanks to: Lin Zhang, Inna Megretskaia, Bob Yantosca, Phillipe LeSager,
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
Page 1 1 of 19, OCO STM 2006 OCO Science Team Meeting March 22, 2006 Vijay Natraj (Caltech), Hartmut Bösch (JPL), Yuk Yung (Caltech) A Two Orders of Scattering.
Page 1 1 of 100, L2 Peer Review, 3/24/2006 Level 2 Algorithm Peer Review Polarization Vijay Natraj.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
Objective: Work with the WRAP, CenSARA, CDPHE, BLM and EPA Region 8 to use satellite data to evaluate the Oil and Gas (O&G) modeled NOx emission inventories.
2 nd GEO-CAPE Community Workshop Boulder, CO May 11-13, 2011 Spatio-temporal Variability of Ozone Laminae Michael J. Newchurch 1, Guanyu Huang 1, John.
Ability of GEO-CAPE to Detect Lightning NOx and Resulting Upper Tropospheric Ozone Enhancement Conclusions When NO emissions from lightning were included.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
. is sponsored by the National Science Foundation David Edwards (NCAR) and Arlindo DeSilva (NASA GSFC) with input from the GEO-CAPE SWG CEOS/MACC-II OSSE.
GEO-CAPE Atmosphere SWG activities Daniel J. Jacob Co-Lead, GEO-CAPE Atmosphere Science Working Group.
Chemical and Aerosol Data Assimilation Activities during CalNex R. Bradley Pierce NOAA/NESDIS/STAR Allen Lenzen 1, Todd Schaack 1, Tom Ryerson 2, John.
Lok Lamsal, Nickolay Krotkov, Randall Martin, Kenneth Pickering, Chris Loughner, James Crawford, Chris McLinden TEMPO Science Team Meeting Huntsville,
TEMPO & GOES-R synergy update and GEO-TASO aerosol retrieval for TEMPO Jun Wang Xiaoguang Xu, Shouguo Ding, Cui Ge University of Nebraska-Lincoln Robert.
Simulation Experiments for GEO-CAPE Regional Air Quality GEO-CAPE Workshop September 22, 2009 Peter Zoogman, Daniel J. Jacob, Kelly Chance, Lin Zhang,
CO 2 Diurnal Profiling Using Simulated Multispectral Geostationary Measurements Vijay Natraj, Damien Lafont, John Worden, Annmarie Eldering Jet Propulsion.
Significant contributions from: Todd Schaack and Allen Lenzen (UW-Madison, Space Science and Engineering Center) Mark C. Green (Desert Research Institute)
MELANIE FOLLETTE-COOK KEN PICKERING, PIUS LEE, RON COHEN, ALAN FRIED, ANDREW WEINHEIMER, JIM CRAWFORD, YUNHEE KIM, RICK SAYLOR IWAQFR NOVEMBER 30, 2011.
TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27,
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
IGARSS 2011, July 24-29, Vancouver, Canada 1 A PRINCIPAL COMPONENT-BASED RADIATIVE TRANSFER MODEL AND ITS APPLICATION TO HYPERSPECTRAL REMOTE SENSING Xu.
Hyperspectral Infrared Alone Cloudy Sounding Algorithm Development Objective and Summary To prepare for the synergistic use of data from the high-temporal.
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
AIRS Radiance and Geophysical Products: Methodology and Validation Mitch Goldberg, Larry McMillin NOAA/NESDIS Walter Wolf, Lihang Zhou, Yanni Qu and M.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
SPEAKERS: Gabriele Pfister, Scientist III, National Center for Atmospheric Research (NCAR) Brad Pierce, Physical Scientist, NOAA Salient Questions: 1.What.
R. T. Pinker, H. Wang, R. Hollmann, and H. Gadhavi Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland Use of.
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Simulation Experiments for TEMPO Air Quality Objectives Peter Zoogman, Daniel Jacob, Kelly Chance, Xiong Liu, Arlene Fiore, Meiyun Lin, Katie Travis, Annmarie.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Using CO observations from space to track long-range transport of pollution Daniel J. Jacob with Patrick Kim, Peter Zoogman, Helen Wang and funding from.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
Influence of Lightning-produced NOx on upper tropospheric ozone Using TES/O3&CO, OMI/NO2&HCHO in CMAQ modeling study M. J. Newchurch 1, A. P. Biazar.
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Geostationary satellite mission for air quality and coastal ecosystems One of 15 missions recommended to NASA for the next decade by the U.S. National.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
The Orbiting Carbon Observatory Mission: Fast Polarization Calculations Using the R-2OS Radiative Transfer Model Vijay Natraj 1, Hartmut Bösch 2, Robert.
Global Characterization of X CO2 as Observed by the OCO (Orbiting Carbon Observatory) Instrument H. Boesch 1, B. Connor 2, B. Sen 1,3, G. C. Toon 1, C.
Polarization Effects on Column CO 2 Retrievals from GOSAT Measurements Vijay Natraj 1, Hartmut Bösch 2, Robert J.D. Spurr 3, Yuk L. Yung 4 1 Jet Propulsion.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
1 Synthetic Hyperspectral Radiances for Retrieval Algorithm Development J. E. Davies, J. A. Otkin, E. R. Olson, X. Wang, H-L. Huang, Ping Yang # and Jianguo.
AGU 2008 Highlight Le Kuai Lunch seminar 12/30/2008.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Regional O3 OSSEs Brad Pierce (NOAA)
Huiqun Wang1 Gonzalo Gonzalez Abad1, Xiong Liu1, Kelly Chance1
GEO-CAPE Atmosphere SWG activities
R2971 Seq0100 Scn003 Hohenpeissenberg (48N, 11W)
Peter Zoogman, Daniel Jacob
Polarization Effects on Column CO2 Retrievals from Non-Nadir Satellite Measurements in the Short-Wave Infrared Vijay Natraj1, Hartmut Bösch2, Robert J.D.
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Polarization Effects on Column CO2 Retrievals from Non-Nadir Satellite Measurements in the Short-Wave Infrared Vijay Natraj1, Hartmut Bösch2, Robert J.D.
Diurnal Variation of Nitrogen Dioxide
Off-line 3DVAR NOx emission constraints
Presentation transcript:

Modeled radiances, update and summary Brad Pierce (NOAA) GEOCAPE Regional and Urban OSSE WG members Co-Leads: Brad Pierce (NOAA) and Vijay Natraj (JPL) Regional Nature run: Brad Pierce and Allen Lenzen (CIMSS) Forward modeling: Vijay Natraj, Susan Kulawit, (JPL) Urban Nature run: Ken Pickering and Chris Loughner (NASA/GSFC) Averaging Kernel regression development: Helen Worden (NCAR) Additional contributions from Jerome Vidot (Meteo/France) and Eva Borbas (UW-Madison/SSEC) who have provided the WG with the High Spectral Resolution (HSR) IR emissivity and VIS reflectivity data bases for the OSSE studies. 3rd TEMPO Science Team Meeting, May 27-28, 2015, University of Alabama in Huntsville Huntsville, AL

GEOCAPE O3 OSSE Development July 2011 DISCOVER-AQ Period Generation of Regional and Urban nature atmosphere Development of surface reflectivity and emissivity data bases Conducting UV/VIS/IR forward radiative transfer calculations on a representative subset of the profiles (14 representative urban and rural sites) Generation of multi-spectral (UV, VIS, IR) ozone retrievals from the subset of nature atmosphere radiances Development of averaging kernel (AK) regressions based on the sub-set of the nature atmosphere retrievals Generation of a full set of nature atmosphere retrievals using the AK regression applied to the original nature atmosphere profiles.

12 km Regional Nature Run 4 km down scaling 1.33 km Urban Nature Run Urban Nature Run (K. Pickering/C. Loughner) CMAQ run at 4 and 1.33 km horizontal resolution; chemical boundary conditions from 12km Regional Nature Run (B. Pierce/A. Lenzen) 12 km Regional Nature Run 4 km down scaling 1.33 km Urban Nature Run

July 2011 Regional Nature Atmosphere: Stratospheric temperature, water vapor, and ozone profiles from the NCEP Global Forecasting System (GFS) Troposphere temperature, water vapor, and trace gas profiles from a nested NAM-CMAQ air quality simulation that used GFS ozone and meteorology for lateral boundary conditions. Stratospheric and upper troposphere NO2, HCHO, SO2 and CO were obtained from the Real-time Air Quality Modeling System (RAQMS). Aerosol extinction calculations used Community Modeling and Analysis System (CMAS) AEROVIS software (humidity dependent aerosol mass to extinction regressions based on measurements from IMPROVE network)

Daily variation of ozone (ppbv, upper left) and aerosol extinction (km-1, upper right) for Atlanta, GA during July, 2011. Mean Atlanta diurnal variation of ozone (ppbv) and aerosol (km-1) are shown in the lower left and lower right, respectively.

Quantifying accuracy and representativeness of the Regional Nature Run (M. Newchurch/L. Wang) Correlation between model and EPA-monitored surface ozone (July 2011) July 2011 Regional Nature run captures the variability of upper troposphere/lower stratosphere (200-100mb) and boundary layer (1000-900mb) ozone well but underestimates free tropospheric (400-300mb) variance Correlation between model and ozonesondes at Beltsville and Edgewood

Hyperspectral surface reflectivity and emissivity data bases UV (335–772 nm) Lambert equivalent reflectivity (LER) based on GOME based surface reflectance [Koelemeijer, 2003] 335.0 O3 (Huggins band) 380.0 aerosol 416.0 aerosol 440.0 NO2 463.0 O2–O2 (477 nm band) 494.5 aerosol 555.0 vegetation 610.0 aerosol 670.0 cloud detection 758.0 O2 (A band) 772.0 O2 (A band) VIS-NIR (0.4-2.5 microns) based on MODIS BRDF hinge points developed for RTTOV, valid up to 70 degrees solar zenith [version 11, Vidot and Borbas, 2014] IR (700 to 2775 cm-1) emissivity from the UW-Madison Baseline Fit Emissivity Database [Seemann et al, 2008] The spectral gap (2775-4000 cm-1) between the VIS/NIR reflectance and IR emissivity data bases is filled using dual regression fitting of spectra from the ASTER spectral library [Baldridge et al, 2009].

VLIDORT 2.6 forward modeling: 14 representative sites, every 3 days, every hour 290-365nm (TEMPO O3-UV) 0.05nm resolution convolved to TEMPO 0.6nm FWHM 540-650nm (TEMPO O3-VIS) 0.05nm resolution convolved to TEMPO 0.6nm FWHM 980-1070nm (GEOCAPE TIR) TEMPO O3-UV TEMPO O3-VIS ~ 8 hours per 15 hour day per location for O3 UV-VIS using 44 cpus

Diurnally resolved Multi-Spectral O3 Retrieval Results (S. Kulawik/V. Natraj) VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR (nighttime) Total Troposphere 0-2 km 0-1 km Diurnally resolved Degrees of Freedom of Signal (DOFS) for different pressure ranges and spectral combinations for all GEOCAPE Regional OSSE sites (no VIS, UV, or UV/VIS retrievals between 02-09Z) Note UV/VIS has the same spectral range and noise as TEMPO. VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR VIS UV-VIS UV UV-VIS-TIR UV-TIR TIR

How does sensitivity vary with solar zenith angle, etc? SZA T_surf Tropos. col. O3 Helen Worden (NCAR)

SVD & AK Multiple Regression (H. Worden) Parameters for multiple regression Non-pressure dependent parameters: Param. Mean Std.Dev. Min Max SZA (°) 44.4 21.3 10.3 89.8 Albedo 0.094 0.075 0.014 0.357 IR emiss. 0.95 0.006 0.94 0.96 P_tpause (mb) 118.0 11.7 83.2 316.2 P_surface (mb) 992.3 21.2 940.9 1018.2 T_surface (K) 308.8 7.5 290.6 327.3 O3 total column (1018 molecules/cm2) 8.37 0.31 7.56 9.63 O3 tropos. column 1.08 0.17 0.57 1.69

Pressure dependent parameters

SVD & Multiple Regression (MR) Trials UV-VIS-TIR case sensitivity characterization results (a) SVD up to 681 hPa, 2 SVs retained Good results for surface & lowermost troposphere Use average AK above 681 hPa

SVD & Multiple Regression (MR) Trials UV-VIS case sensitivity characterization results (a) SVD up to 681 hPa, 2 SVs retained Good results for surface & lowermost troposphere Use average AK above 681 hPa

GEOCAPE NO2 OSSE Development July 2011 DISCOVER-AQ Period Forward modeling for full Regional and Urban Nature Run domain 400-490nm (TEMPO NO2-UV) 0.05nm resolution convolved to TEMPO 0.6nm FWHM We will be evaluating several approaches to perform the forward model radiance and Jacobian calculations: Same code (VLIDORT 2.6) but in scalar mode (ignoring polarization), VLIDORT in conjunction with fast PCA-based approach - developed by Vijay Natraj in collaboration with Rob Spurr Exact single scattering computation in conjunction with two-stream multiple scattering Dutch KNMI doubling-adding code (DAK)

References Baldridge, A. M., S.J. Hook, C.I. Grove and G. Rivera, 2009: The ASTER Spectral Library Version 2.0. Remote Sensing of Environment, vol 113, pp. 711-715. Koelemeijer, R. B. A., J. F. de Haan, and P. Stammes, 2003: A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations, J. Geophys. Res., 108(D2), 4070, doi:10.1029/2002JD002429. Vidot, J. and Borbas, E., 2014: Land surface VIS/NIR BRDF atlas for RTTOV-11: model and validation against SEVIRI land SAF albedo product, Q. J. R. Meteorol. Soc., DOI:10.1002/qj.2288. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Radiat. Transfer, 91, 233-244, 2005. Natraj, V., X. Liu, S. Kulawik, K. Chance, R. Chatfield, D.P. Edwards, A. Eldering, G.L. Francis, T. Kurosu, K. Pickering, R. Spurr, and H.M. Worden, 2011: Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements. Atmospheric Environment, 45, 7151–7165, DOI: 10.1016/j.atmosenv.2011.09.014.