Esercitazione 2. 1. Definizione del sistema >> A=[-0.2 1; -1 -0.4] A = -0.2000 1.0000 -1.0000 -0.4000 >> B=[0 1]' B = 0 1 >> C=[1 0] C = 1 0 >> D=0 D.

Slides:



Advertisements
Similar presentations
PROPIEDADES (Z = x - iy) * z1 +z2 = z1 +z2 * z = z * z1z2 =z1 +z2 * Z= Z * z1 / z2= z1/ z2 * Z = -Z Re {Z} = z + z Im {Z} = z - z 2 2i.
Advertisements

3 hr 5 hr 8 hr Hours worked Charge
Z- Transform and Its Properties
1.1 Line Segments, Distance and Midpoint
Usually, there is no single line that passes through all the data points, so you try to find the line that best fits the data. This is called the best-fitting.
Management of Diabetes Treat to Target Approach (A1c
Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412.
Chapter Six Demand. Properties of Demand Functions u Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands x.
1.4 Linear Equations in Two Variables
3.6 PARALLEL LINES IN THE COORDINATE PLANE 1 m = GOAL
D x D V y 1 L x D L x 1 L x 2 V y 2 V y 3 xDxD y1y1 y2y2 x1x1 x2x2 y3y3 x3x3 y4y4 z.
O A Corpo 1 Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos O X Y X1X1 Y1Y1 X2X2 Y2Y2 X3X3 Y3Y3 A B P l = 75 mm l.
1. 2 Memória (R-bit register) Circuito Combinatório D1D1 DRDR TRTR T1T1 X1X1 XLXL Y1Y1 YNYN clockreset MEF.
piramide Con base quadrata *apotema di base *altezza
RANdom SAmple Consensus
robot con 6 gradi di mobilità
1 Übung 1 Sei D = { a,b,c,d,e } ein skalarer Datentyp Bestimme den kanonischen Repräsentanten von s: x1 = bla x2[a] = 5 x2[b] = 3 x2[c] = 3 x2[d] = 4 x2[e]
Measurement of a Pond Basics of plane geometry Idea of the Coordinate Plane Confining an Area Practical skill Cooperation in the Group Lake measurement.
Institute of Applied Microelectronics and Computer Engineering College of Computer Science and Electrical Engineering, University of Rostock Spezielle.
Graphs & Linear Equations
The Derivative in Graphing and Application
Slope of a Line 11-2 Warm Up Problem of the Day Lesson Presentation
Calculating Slope m = y2 – y1 x2 – x1.
Slope Problems.
Multiplikation H. Malz. Multiplikation H. Malz Operanden laden.
Year 10 Exam Revision Groups of 4 Pupil A,B,C,D 1 point for each pupil.
Program Verification Using Hoares Logic Book: Chapter 7.
1 Program verification: flowchart programs (Book: chapter 7)
The Italian company with a particular know how in high tech electronics Il controllo assi Tecnint HTE.
Linear Equations in Two Variables
Higher Order Universal One-Way Hash Functions Deukjo Hong Graduate School of Information Security, Center for Information Security Technologies, Korea.
Pattern Finding and Pattern Discovery in Time Series
Latent variable models for time-to-event data A joint presentation by Katherine Masyn & Klaus Larsen UCLA PSMG Meeting, 2/13/2002.
Another example Max z=5x1+12x2+4x3-MR S.t. x1+2x2+x3+x4=10
Stone type: Travertine Technical Features: Density: 2.7 Pressure Resistance: 420 Water Absorbing: 0.5 % Production: Tons per month 5000 Ton good.
x1x1 x2x2 (X 1,X 2 ) BY: Grupo CDPYE-UGR This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License.
Inverting a Singly Linked List Instructor : Prof. Jyh-Shing Roger Jang Designer : Shao-Huan Wang The ideas are reference to the textbook “Fundamentals.
Numbers & Geometry Points and Distances. 6/3/2013 Numbers and Geometry 2 Distance d between numbers a and b d = Example: | = Points and Distances.
Roghibin's blog EQUILIBRIUM OF RIGID BODIES KESETIMBANG AN BENDA TEGAR.
MATLAB BASICS ECEN 605 Linear Control Systems Instructor: S.P. Bhattacharyya.
Graphing Lines Day 0ne. Cover the concepts: Relation Function
HoDoMS Careers Strand - Working with Employers.
On / By / With The building blocks of the Mplus language.
Gradient of a straight line x y 88 66 44 2 44 4 For the graph of y = 2x  4 rise run  = 8  4 = 2 8 rise = 8 4 run = 4 Gradient = y.
Flag = 1 or 2 or 3 1: 2: 3: [a1, a2, Ea1, Ea2, r] = linear_fit(xyData, xmin, xmax, flag) coefficients x i, y i data in a matrix of n rows by 2 columns.
First cell. common_minimum = ma mg S11 S11 S11 (noc=1) (noc=2) (noc=3)
Using k to Estimate and Test Patterns in the APIM David A. Kenny February 17, 2013.
A.F 3.1- Graph Functions A.F 3.3- Slope
COORDINATE PLANE.
Preview Warm Up California Standards Lesson Presentation.
2 x0 0 12/13/2014 Know Your Facts!. 2 x1 2 12/13/2014 Know Your Facts!
ME 520 Fundamentals of Finite Element Analysis
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
STATE SPACE MODELS MATLAB Tutorial.
CS 395/495-26: Spring 2004 IBMR: Singular Value Decomposition (SVD Review) Jack Tumblin
U n i v e r s i t y o f S o u t h e r n Q u e e n s l a n d Neural Networks and Self-Organising Maps CSC3417 Semester 1, 2007.
function[y,n]=sigadd(x1,n1,x2,n2)
5 x4. 10 x2 9 x3 10 x9 10 x4 10 x8 9 x2 9 x4.
CSE202: Lecture 3The Ohio State University1 Assignment.
(1) MAX X1+3X2+2X3+4X4 X1=AM PHONE, X2=AM RIDE, X3=AFT PHONE, X4=AFT RIDE CONSTRAINTS AM: X1+20X2 < 12(60)=720 AFT: 2X3+30X4 < 14(60) = 840 GAS: X2+X4.
0 x x2 0 0 x1 0 0 x3 0 1 x7 7 2 x0 0 9 x0 0.
BINARY/MIXED-INTEGER PROGRAMMING ( A SPECIAL TYPE OF INTEGER PROGRAMMING)
A. B c D E F G “Osservatorio sul Mercato del Lavoro Provincia di Oristano su dati SIL Regione Autonoma della Sardegna” Data taken from local job.
Plot Diagram.
La Boutique Del PowerPoint.net
International Economics Twelfth Edition
'. \s\s I. '.. '... · \ \ \,, I.
Monica Scannapieco Division "Information and Application Architecture“
' '· \ ·' ,,,,
STANDARD PERTURBATION THEORY and APPLICATIONS
Presentation transcript:

Esercitazione 2

1. Definizione del sistema >> A=[-0.2 1; ] A = >> B=[0 1]' B = 0 1 >> C=[1 0] C = 1 0 >> D=0 D = 0 >> sistema=ss(A,B,C,D) a = x1 x2 x x b = u1 x1 0 x2 1 c = x1 x2 y1 1 0 d = u1 y1 0 Continuous-time model.

2. Calcolo punti di equilibrio -inv(A)*B*5 ans =

3. Calcolo del movimento >> t=0:0.01:40; >> u=5*ones(1,length(t)); >> [Y,T,X] = lsim(sistema,u,t,[ ]'); >> plot(T,X(:,1),T,X(:,2))

3. Grafico del movimento e della traiettoria >> plot3(T,X(:,1),X(:,2)) >> plot(X(:,1),X(:,2))

3. Calcolo del movimento forzato >> t=0:0.01:40; >> u=5*ones(1,length(t)); >> [Y,T,X] = lsim(sistema,u,t); >> plot(T,X(:,1),T,X(:,2))

3. Grafico del movimento forzato e della traiettoria >> plot3(T,X(:,1),X(:,2)) >> plot(X(:,1),X(:,2))

3. Calcolo del movimento libero >> t=0:0.01:40; >> u=0*ones(1,length(t)); >> [Y,T,X] = lsim(sistema,u,t,[ ]'); >> plot(T,X(:,1),T,X(:,2))

3. Grafico del movimento libero e della traiettoria >> plot3(T,X(:,1),X(:,2)) >> plot(X(:,1),X(:,2))

3. Movimento, mov. libero, mov. forzato >> t=0:0.01:40; >> u=0*ones(1,length(t)); >> [Y,T,Xlib] = lsim(sistema,u,t,[ ]'); >> u=5*ones(1,length(t)); >> [Y,T,Xfor] = lsim(sistema,u,t); >> [Y,T,X] = lsim(sistema,u,t,[ ]'); >> plot(T,X,T,Xlib+Xfor)

4. Ripetere lesercizio con A1=… >> t=0:0.01:40; >> u=5*ones(1,length(t)); >> [Y,T,X] = lsim(sistema,u,t,[ ]'); >> plot(T,X(:,1),T,X(:,2)) >> -inv(A)*B*5 ans =

5. Sistema F=ma >> [Y,T,X] = lsim(sistema,u,t,[0.1 0]'); >> [Y,T,X] = lsim(sistema,u,t,[0.2 0]'); >> [Y,T,X] = lsim(sistema,0*u,t,[0.1 0]'); >> [Y,T,X] = lsim(sistema,0*u,t,[0.2 0]');