V. Abazov 1, G. Alexeev 1, M. Alexeev 2, A. Amoroso 2, N. Angelov 1, M. Anselmino 3, S. Baginyan 1, F. Balestra 2, V. A. Baranov 1, Yu. Batusov 1, I. Belolaptikov.

Slides:



Advertisements
Similar presentations
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Advertisements

SPIN PHYISICS at FAIR F. Bradamante J-PARC WORKSHOP, KEK November 30, 2005.
1 October Test beam - THGEM group Alessandria-CERN-Freiburg-Liberec-Prague-Torino-Trieste Collaboration 4 th RD51 collaboration meeting Jarda.
P.Lenisa Polarized Antiprotons Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY Project X Workshop FNAL, 01/26/08 Polarized Antiprotons.
Mauro Anselmino, Prague, August 1, 2005 Hadron Structure and Hadron Spectroscopy Transversity (transverse spin and transverse motion) Transversity distributions.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
E906 Physics in 5? minutes Paul E. Reimer 8 December 2006 d-bar/u-bar in the proton Nuclear effects in the sea quark distributions High-x valence distributions.
Marialaura Colantoni INFN Torino Congressino Torino
1 Updates on Transversity Experiments and Interpretations Jen-Chieh Peng Transversity Collaboration Meeting, JLab, March 4, 2005 University of Illinois.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Working Group 5 Summary David Christian Fermilab.
Drell-Yan Perspectives at FAIR Marco Destefanis Università degli Studi di Torino Drell-Yan Scattering and the Structure of Hadrons Trento (Italy) May 21-25,
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Polarized Antiprotons at GSI
Prague 05-10/07/2004Marialaura Colantoni1 Advance Study Institute SYMMETRY and SPIN Marialaura Colantoni* on behalf of the COMPASS coll. *Universita’ del.
International Workshop on Transverse Polarisation Phenomena in Hard Processes Como, September 7- 10, 2005 Marco Maggiora Dipartimento di Fisica ``A. Avogadro''
Transversity and the PAX GSI Alessandro Drago University of Ferrara.
PHYSICS RESULTS FROM COMPASS F. Bradamante University of Trieste and INFN Trieste on behalf of the Collaboration Workshop on Hadron Structure at J-PARC.
Single-spin asymmetries in two hadron production of polarized deep inelastic scattering at HERMES Tomohiro Kobayashi Tokyo Institute of Technology for.
The future COMPASS-II Drell-Yan program M. Alexeev INFN sez. di Torino. On behalf of the COMPASS collaboration.
Leonid AFANASYEV JOINT INSTITUTE FOR NUCLEAR RESEARCH on behalf of the DIRAC collaboration 37 th International Conference on High Energy Physics 2 – 9.
MENU2004, Bejing, August 29- September 5, 2004 Raimondo Bertini Dipartimento di Fisica ``A. Avogadro'' and INFN - Torino, Italy Λ POLARISATION TO PROBE.
Improved Measurement of d/u Asymmetry in the Nucleon Sea
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
1 Possible Additional Measurements in E906 Azimuthal angular distributions of Drell-Yan and J/ Ψ p+d/p+p ratios for J/ Ψ production Nuclear effects of.
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
I R F U DRELL-YAN at COMPASS Stephane Platchkov I nstitut de R echerche sur les lois F ondamentales de l’ U nivers CEA/IRFU, Saclay, France GDR Nucléon.
Marco Maggiora Dip. “A. Avogadro” – Università e INFN - Torino Commissione I — Roma, Maggio 2004 ASSIA LOI Dzhelepov Laboratory of Nuclear Problems,
Marialaura Colantoni1 Workshop on Hadron Structure and Spectroscopy Marialaura Colantoni* on behalf of the COMPASS coll. *Universita’ del Piemonte.
HERMES results on azimuthal modulations in the spin-independent SIDIS cross section Francesca Giordano DESY, Hamburg For the collaboration Madrid, DIS.
Possibility of direct extraction of the transversitiy from polarized Drell-Yan measurement in COMPASS Transversity Drell-Yan for transverstiy transverse.
Drell-Yan Di-Lepton Production Why Drell-Yan? Asymmetries depend on PD only (SIDIS→convolution with QFF) Why ? Each valence quark can contribuite to the.
COMPASS DRELL-YAN PROGRAM COMPASS DRELL-YAN PROGRAM T.Iwata Department of Physics, Yamagata University J-PARC meeting at RIKEN, 7-8, April, 2008,
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
Latest results from COMPASS TMD physics Anna Martin Trieste University & INFN on behalf of the COMPASS Collaboration.
The future COMPASS-II Drell-Yan program M. Alexeev INFN sez. di Trieste. On behalf of the COMPASS collaboration.
Polarised DIS Experiment Gerhard Mallot. G. Mallot/CERN Spin Summer School, BNL, 2004 Plan Lecture I –introduction –kinematics –the cross section –structure.
I R F U Nucleon structure studies with the COMPASS experiment at CERN Stephane Platchkov Institut de Recherche sur les lois Fondamentales de l’Univers.
IX International Conference on Hypernuclear and Strange Particle Physics Johannes Gutenberg-Universität Mainz, October , 2006 Marco Maggiora Dipartimento.
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
Transversity 2005, Como Two-hadron Adam Mielech INFN Trieste on behalf of COMPASS collaboration 7-10th. September 2005.
1 DIS 2007, Munich, April 19, 2007 Aram Kotzinian Beyond Collins and Sivers: further measurements of the target transverse spin-dependent azimuthal asymmetries.
Future studies of TMDs Delia Hasch SIR05- International Workshop on Semi-inclusive reactions and 3D-parton distributions May 18-20, 2005; Jefferson Lab,
Drell-Yan Studies in ppbar Reactions at FAIR Marco Destefanis Università degli Studi di Torino 43 rd PANDA Collaboration Meeting GSI, Darmstadt (Germany)
Future Drell-Yan program of the COMPASS cllaboration Norihiro DOSHITA (Yamagata University) On behalf of the COMPASS collaboration 2016/7/31N. Doshita.
Review and Perspective of Muon Studies Marco Destefanis Università degli Studi di Torino PANDA Collaboration Meeting GSI (Germany) September 5-9, 2011.
Prague (CZ), August 1stPaolo Pagano (INFN - Trieste)1 COMPASS results: TRANSVERSITY Paolo Pagano On behalf of the COMPASS collaboration.
Timelike Compton Scattering at JLab
Transversity (transverse spin and transverse motion)
Spin physics with COMPASS
8th International Conference on Nuclear Physics at Storage Rings
TMD experiments from COMPASS SIDIS
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Villa Olmo (Como), 7−10th. September 2005
Collins and Sivers asymmetries on the deuteron from COMPASS data
Plans for nucleon structure studies at PANDA
Study of spin structure of nucleon in COMPASS - measurement of G/G
Prague 2007 Collins and Sivers asymmetries
Physics with polarized antiprotons at GSI-PAX
Transverse parton distribution functions
New Results for Transverse Spin Effects at COMPASS
SINGLE HADRON TRANSVERSE SPIN ASYMMETRIES FROM COMPASS
past and future experiments
past and future experiments
Quark and Gluon Sivers Functions
Transverse Spin COMPASS
Spin Studies via Drell-Yan Process at PANDA
Trieste University and INFN
Presentation transcript:

V. Abazov 1, G. Alexeev 1, M. Alexeev 2, A. Amoroso 2, N. Angelov 1, M. Anselmino 3, S. Baginyan 1, F. Balestra 2, V. A. Baranov 1, Yu. Batusov 1, I. Belolaptikov 1, R. Bertini 2, N. Bianchi 11, A. Bianconi 4, R. Birsa 13, T. Blokhintseva 1, A. Bonyushkina 1, F. Bradamante 13, A. Bressan 13, M. P. Bussa 2, V. Butenko 1, M. Colantoni 5, M. Corradini 4, S. DallaTorre 13, A. Demyanov 1, O. Denisov 2, E. De Sanctis 11, P. DiNezza 11, V. Drozdov 1, J. Dupak 9, G. Erusalimtsev 1, L. Fava 5, A. Ferrero 2, L. Ferrero 2, M. Finger 6, M. Finger 7, V. Frolov 2, R. Garfagnini 2, M. Giorgi 13, O. Gorchakov 1, A. Grasso 2, V. Grebenyuk 1, D. Hasch 11, V. Ivanov 1, A. Kalinin 1, V. AKalinnikov 1, Yu. Kharzheev 1, N. V. Khomutov 1, A. Kirilov 1, E. Komissarov 1, A. Kotzinian 2, A. S. Korenchenko 1, V. Kovalenko 1, N. P. Kravchuk 1, N. A. Kuchinski 1, E. Lodi Rizzini 4, V. Lyashenko 1, V. Malyshev 1, A. Maggiora 2, M. Maggiora 2, A. Martin 13, Yu. Merekov 1, A. S. Moiseenko 1, V. Muccifora 11, A. Olchevski 1, V. Panyushkin 1, D. Panzieri 5, G. Piragino 2, G. B. Pontecorvo 1, A. Popov 1, S. Porokhovoy 1, V. Pryanichnikov 1, M. Radici 14, P. G. Ratcliffe 12, M. P. Rekalo 10, P. Rossi 11, A. Rozhdestvensky 1, N. Russakovich 1, P. Schiavon 13, O. Shevchenko 1, A. Shishkin 1, V. A. Sidorkin 1, N. Skachkov 1, M. Slunecka 7, A. Srnka 9, V. Tchalyshev 1, F. Tessarotto 13, E. Tomasi 8, F. Tosello 2, E. P. Velicheva 1, L. Venturelli 4, L. Vertogradov 1, M. Virius 9, G. Zosi 2 and N. Zurlo 4 ASSIA LOI 1 Dzhelepov Laboratory of Nuclear Problems, JINR, Dubna, Russia 2 Dipartimento di Fisica ``A. Avogadro'' and INFN - Torino, Italy 3 Dipartimento di Fisica Teorica and INFN - Torino, Italy 4 Università and INFN, Brescia, Italy 5 Universita' del Piemonte Orientale and INFN sez. di Torino - Italy 6 Czech Technical University, Prague, Czech Republic 7 Charles University, Prague, Czech Republic 8 DAPNIA,CEN Saclay, France 9 Inst. of Scientific Instruments Academy of Sciences,Brno, Czech Republic 10 NSC Kharkov Physical Technical Institute, Kharkov, Ukraine 11 Laboratori Nazionali Frascati, INFN, Italy 12 Università dell' Insubria,Como and INFN sez. Milano, Italy 13 University of Trieste and INFN Trieste, Italy 14 INFN sez. Pavia, Italy

Introduction GSI: A complete description of nucleonic structure leading twist NLO Physics objectives:  proton and gluon distribution functions  quark fragmentation functions  Drell-Yan di-lepton production  Single spin asymmetries  Spin observables in, production  Time like electromagnetic form factors

f 1, g 1 studied for decades: h 1 essentially unknown Twist-2 PDFs κ T -dependent Parton Distributions Distribution functions Chirality even odd Twist-2 ULTULT f 1 g 1,h1,h1,

Why Drell Yan? Asymmetries depend on PD only (SIDIS→convolution with QFF) Why ? Each valence quark can contribuite to the diagram Kinematics Drell-Yan Di-Lepton Production plenty of (single) spin effects 3 planes: plane to polarisation vectors plane

Scaling: Full x 1,x 2 range. needed [1] Anassontzis et al., Phys. Rew. D38 (1988) 1377 Drell-Yan Di-Lepton Production

Drell Yan Asymmetries — Unpolarised beam and target NLO pQCD: λ  1,   0, υ  0 Experimental data [1] : υ  30 % [1] J.S.Conway et al., Phys. Rev. D39(1989)92. υ involves transverse spin effects at leading twist [2] : cos2φ contribution to angular distribution provide: [2] D. Boer et al., Phys. Rev. D60(1999) Di-Lepton Rest Frame

Conway et al, Phys. Rew. D39 (1989) 92 Angular distribution in CS frame Fermilab  -N   +  252 GeV/c -0.6 < cos < < M < 8.5 GeV/c 2 cut on P T selects asymmetry 30% asymmetry observed for  -

Drell-Yan Asymmetries — Unpolarised beam, polarised target λ  1,   0 Even unpolarised beam is a powerful tool to investigate к T dependence of QDF D. Boer et al., Phys. Rev. D60(1999)

Uncorrelated quark helicities access chirally-odd functions TRANSVERSITY Drell-Yan Asymmetries — Polarised beam and target Ideal because: h 1 not to be unfolded with fragmentation functions chirally odd functions not suppressed (like in DIS)

Drell-Yan Asymmetries — Polarised beam and target To be corrected for: NH 3 polarised target:

Beam and Target ASSIA ? ?

Beam and Target SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Key features: Generation of intense, high-quality secondary beams of rare isotopes and antiprotons. Two rings: simultaneous beams.

Sketch of the apparatus MINIDC: drift type detectors like GEMs and  MEGA DC: small drift type detectors with high spatial resolution + larger detectors with dead central area

Experimental setup Possible setup scheme similar to the COMPASS first spectrometer SM1 magnet ( 1Tm, stands ) GEM,MICROMEGA detetors smaller angle MWPC, STRAW detectors larger angle expected resolution vertex resolution HODOSCOPEs → Trigger sandwiches iron plates, Iarocci tubes, scintillator slabs →  Id beam vacuum pipe along the apparatus

Beam and Target NH 3 10g/cm 3 : 2 x 10cm cells with opposite polarisation GSI modifications: extraction SIS100 → SIS300 or injection CR → SIS300 slow extraction SIS300 → beamline adapted to experimental area adapted to handle expected radiation from

Alternative GSI solution Luminosity comparable to external target → KEY IUSSUE dilution factor f~1 difficult to achieve polarisation P p ~ 0.85 required achievable with present HESR performances (15 GeV/c) only transverse asymmetries can be measured p ↑ -beam required polarisation proton source and acceleration scheme preserving polarisation no additional beam extraction lines needed EXPERIMENTAL SETUP COMPLETELY DIFFERENT HESR collider polarised p and beams

Fermilab E GeV/c no K-factor, continuum contribution only ∫dM 2 between 6 and 16 = (2.6, 7.8, 13, 20) GeV -2

Phase space for Drell-Yan processes 30 GeV/c 15 GeV/c 40 GeV/c  = const: hyperbolae x F = const: diagonal PANDA ASSIA

A. Bianconi (ASSIA col.)

REQUIREMENTS FOR THE DRELL-YAN MODEL Here, as well as in the parton model, Impulse approximation is required dilepton mass M² large, s very large, but M² /s finite “If we want to find processes which satisfy the kinematical constraints allowing application of the impulse approximation we need look for interactions at high energies s which absorb or produce a lepton system of huge mass M² such that the ratio M² /s is finite“. S.D. Drell and T.-M. Yan Phys. Rev. Lett. 25 (1970) 316 Therefore s must be of the order of 100, that is T ≥ 40 GeV for M² in the `safe` region. No data below T= 30 GeV Other possibility: the collider mode luminosity?