CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Model independent properties of two photon exchange Egle Tomasi-Gustafsson Saclay, France Frascati, January 20, 2006 Collaboration with M.P. Rekalo Presently with G.I. Gakh and E.A. Kuraev
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio PLAN Introduction –Generalities on form factors –Electric proton FF (space-like) Two-photon exchange –History –Model independent properties –Observables in time-like region –Signatures of two-photon exchange Search for evidence in the data Alternative explanation for the discrepancy of FFs ratio Perspectives
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Hadron Electromagnetic Form factors –Characterize the internal structure of a particle ( point-like) –In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by 2S+1 form factors. –Neutron and proton form factors are different. –Elastic form factors contain information on the hadron ground state. –Playground for theory and experiment.
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Space-like and time-like regions FFs are analytical functions. In framework of one photon exchange, FFs are functions of the momentum transfer squared of the virtual photon, t=q 2 =-Q 2. Scattering e - + h => e - + he + + e - => h + h _ Annihilation Annihilation _ Form factors are real in the space-like region and complex in the time-like region. t<0t>0
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Crossing Symmetry Scattering and annihilation channels: - Described by the same amplitude : - function of two kinematical variables, s and t p 2 → – p 1 k 2 → – k 2 - which scan different kinematical regions
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio The Rosenbluth separation (1950) Elastic ep cross section (1-γ exchange) point-like particle: Mott Linearity of the reduced cross section!
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio The polarization induces a term in the cross section proportional to G E G M Polarized beam and target or polarized beam and recoil proton polarization The polarization method (1967)
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio THE RESULTS (>2000) Jlab E93-027, E Spokepersons: Ch. Perdrisat, V. Punjabi, M. Jones, E. Brash M. Jones et ql. Phys. Rev. Lett. 84,1398 (2000) O. Gayou et al. Phys. Rev. Lett. 88: (2002) Linear deviation from dipole G Ep G Mp
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Electric proton FF Different results with different experimental methods !! New mechanism: two-photon exchange?
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Two-Photon exchange 1 -2 interference is of the order of =e 2 /4 =1/137 (in usual calculations of radiative corrections, one photon is ‘hard’ and one is ‘soft’) In the 70’s it was shown [J. Gunion and L. Stodolsky, V. Franco, F.M. Lev, V.N. Boitsov, L. Kondratyuk and V.B. Kopeliovich, R. Blankenbecker and J. Gunion] that, at large momentum transfer, due to the sharp decrease of the FFs, if the momentum is shared between the two photons, the 2 contribution can become very large The 2 amplitude is expected to be mostly imaginary. In this case, the 1 -2 interference is more important in time-like region, as the Born amplitude is complex.
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Qualitative estimation of 2 exchange From quark counting rules: F d ~ t -5 and F N ~t -2 For t = 4 GeV 2, For d, 3 He, 4 He, 2 effect should appear at ~1 GeV 2, for protons ~ 10 GeV 2 q/2 For ed elastic scattering:
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Two-Photon exchange In 1999 M.P. Rekalo, E. T.-G. and D. Prout found a model-independent parametrization of the 2 contribution and applied to ed-elastic scattering data. → Discrepancy between the results from Hall A [L.C. Alexa et al. Phys. Rev. Lett. 82, 1374 (1999)] and Hall C [D. Abbott et al. Phys. Rev. Lett. 82, 1379 (1999)]. M. P. Rekalo, E. T-G and D. Prout, Phys. Rev. C60, (1999)
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio {g1{g 1 -2 interference { 22 11 { M. P. Rekalo, E. T.-G. and D. Prout Phys. Rev. C (1999)
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio -2 interference M. P. Rekalo, E. T-G and D. Prout, Phys. Rev. C60, (1999) C/A D/A
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio The 1 -2 interference destroys the linearity of the Rosenbluth plot!
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Model independent properties of two photon exchange
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Two (complex) EM FFs Functions of one variable (t) → 4 spin ½ fermions → 16 amplitudes in the general case. P- and T-invariance of EM interaction, helicity conservation, Model independent considerations for Three (complex) amplitudes Functions of two variables (s,t) Crossing symmetry, C-invariance, T-reversal connect: e ± + N e ± + N, N+N e + + e -, and e + + e - N+N 1 exchange:
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio The Matrix Element for Assuming P-invariance, and lepton helicity conservation, the matrix element for 1 +2 exchange is: For 1 -exchange: M. L. Goldberger, Y. Nambu and R. Oehme, Ann. Phys 2, 226 (1957) M.P. Rekalo and E. Tomasi-Gustafsson, EPJA 22, 331 (2004) vectoraxial
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Generalized Form Factors 2 terms By analogy with Sachs and Fermi-Dirac FFs: Decomposition of the amplitudes: complex functions of 2 variables Both F 1N and F 2N contain 1 +2 !
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Unpolarized cross section 2 exchange induces three new terms, of the order of A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962) B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993).
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Odd properties of the 2 amplitudes with respect to the transformation: Symmetry relations One can remove or single out the 2 contribution by doing the sum or the difference of the differential cross section at the angles connected by this transformation cos = - cos i.e., -
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Sum of the differential cross sections: Remove the 2 contribution Total cross section:
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Angular asymmetry Single out the 2 contribution with In terms of amplitudes - only interference terms!
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio contribution 2 contribution The sum: is free from 2 contributions!
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio e ± Model independent considerations for e ± N scattering 2 real functions 3 complex functions 8 real functions determine the e ± e ± 6 complexe amplitudes for e ± N →e ± N M. P. Rekalo and E. T-G Eur. Phys. Jour. A Relations among the functions! Electron and positron scattering e±e± Ne±e± N
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio e ±In the same kinematical conditions Sum and Difference of e ± N scattering M. P. Rekalo and E. T-G Eur. Phys. Jour. A Electron and positron scattering e±e± Ne±e± N Model independent considerations which hold at O( 2 ) e+e+e+e+ e-e-e-e-
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Single spin observables T-odd observable At 90° expected small (vanishes for 1 exchange) : At threshold (vanishes for 1 exchange due to G E =G M ) : TPE contribution: Small, of the order of Relative role increases when q 2 increases Does not vanish, in the general case, for 1 exchange
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Form Factor determination C-odd properties of nucleon polarization with is the phase difference of the form factors G E and G M
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Form Factor ratio R=|GE| / |GM| Form Factor ratio R=|GE| / |GM| The sum: is free from 2 contributions! The Ratio R can be determined by:
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Is there any evidence of presence of a 2 contribution in the existing ep data? NON
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio From the data: deviation from linearity << 1%! Parametrization of 2 -contribution for e+p E. T.-G., G. Gakh Phys. Rev. C (2005)
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Possible explanation for the FFs discrepancy: Radiative Corrections
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Radiative corrections Effects of the order of -few percent on polarization observables, -up to 40% on cross section! Complete calculations in progress Mo and Tsai (1969) Schwinger (1949)
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Structure function method Assumes dipole FFs Change the slope ! Q 2 =1 GeV 2 Q 2 =5 GeV 2 Q 2 =3 GeV 2 SF Born Polarization RC Born E.A Kuraev, V.S. Fadin Sov. J. Nucl. Phys. 41, 466 (1985)
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio We have derived model independent formulas for all experimental observables in presence of 2 exchange, as functions of three complex amplitudes for e + + e - N+N Using symmetry properties one can remove or single out 2 contributions Crossing symmetry, C-invariance, T-reversal connect: e ± + N e ± + N, N+N e + + e -, and e + + e - N+N Conclusions New data welcome in next future! Revise Radiative Corrections! Novosibirsk- VEPP3