Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / 2006 1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.

Slides:



Advertisements
Similar presentations
1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 8th Lecture / 8. Vorlesung.
Advertisements

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 8 / Vorlesung 8 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Dr.-Ing. René Marklein - NFT I - Lecture 10 / Vorlesung 10 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Algebraic, transcendental (i.e., involving trigonometric and exponential functions), ordinary differential equations, or partial differential equations...
Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.
Linear Systems of Equations
Solving Linear Systems (Numerical Recipes, Chap 2)
SOLVING SYSTEMS OF LINEAR EQUATIONS. Overview A matrix consists of a rectangular array of elements represented by a single symbol (example: [A]). An individual.
Rayan Alsemmeri Amseena Mansoor. LINEAR SYSTEMS Jacobi method is used to solve linear systems of the form Ax=b, where A is the square and invertible.
1 EE 616 Computer Aided Analysis of Electronic Networks Lecture 3 Instructor: Dr. J. A. Starzyk, Professor School of EECS Ohio University Athens, OH,
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 17 Solution of Systems of Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 20 Solution of Linear System of Equations - Iterative Methods.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 19 Solution of Linear System of Equations - Iterative Methods.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 14 Elimination Methods.
Special Matrices and Gauss-Siedel
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 15 Solution of Systems of Equations.
ECIV 520 Structural Analysis II Review of Matrix Algebra.
reinisch_ Lecture #2 Electromagnetic Theory (Cravens, Appendix A)
Thomas algorithm to solve tridiagonal matrices
ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW II.
Monica Garika Chandana Guduru. METHODS TO SOLVE LINEAR SYSTEMS Direct methods Gaussian elimination method LU method for factorization Simplex method of.
17 Jul 2007 KKKQ 3013 PENGIRAAN BERANGKA Week 2 – Systems of Linear Equations 17 July am – 9.00 am.
Numerical Analysis 1 EE, NCKU Tien-Hao Chang (Darby Chang)
LU Decomposition 1. Introduction Another way of solving a system of equations is by using a factorization technique for matrices called LU decomposition.
1 Numerical Integration of Partial Differential Equations (PDEs)
Systems of Linear Equations Iterative Methods
Advanced Computer Graphics Spring 2014 K. H. Ko School of Mechatronics Gwangju Institute of Science and Technology.
G AUSSIAN E LIMINATION Presented by: Max Le Max Le Justin Lavorgna Data Structures II: Algorithm Design & Analysis Algorithm Design & Analysis.
1 Iterative Solution Methods Starts with an initial approximation for the solution vector (x 0 ) At each iteration updates the x vector by using the sytem.
Application of Differential Applied Optimization Problems.
Scientific Computing Partial Differential Equations Poisson Equation.
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
A 3D Vector-Additive Iterative Solver for the Anisotropic Inhomogeneous Poisson Equation in the Forward EEG problem V. Volkov 1, A. Zherdetsky 1, S. Turovets.
Linear Systems Iterative Solutions CSE 541 Roger Crawfis.
Lecture 8 Matrix Inverse and LU Decomposition
Lecture 7 - Systems of Equations CVEN 302 June 17, 2002.
Parallel Solution of the Poisson Problem Using MPI
MECN 3500 Inter - Bayamon Lecture 8 Numerical Methods for Engineering MECN 3500 Professor: Dr. Omar E. Meza Castillo
MECN 3500 Inter - Bayamon Lecture 9 Numerical Methods for Engineering MECN 3500 Professor: Dr. Omar E. Meza Castillo
Introduction to Scientific Computing II Overview Michael Bader.
1 Solving the algebraic equations A x = B =. 2 Direct solution x = A -1 B = = Applicable only to small problems For the vertical in the spectral technique.
1 Chapter 7 Numerical Methods for the Solution of Systems of Equations.
Partial Derivatives Example: Find If solution: Partial Derivatives Example: Find If solution: gradient grad(u) = gradient.
1. Systems of Linear Equations and Matrices (8 Lectures) 1.1 Introduction to Systems of Linear Equations 1.2 Gaussian Elimination 1.3 Matrices and Matrix.
9 Nov B - Introduction to Scientific Computing1 Sparse Systems and Iterative Methods Paul Heckbert Computer Science Department Carnegie Mellon.
Gaoal of Chapter 2 To develop direct or iterative methods to solve linear systems Useful Words upper/lower triangular; back/forward substitution; coefficient;
Linear System expensive p=[0,0.2,0.4,0.45,0.5,0.55,0.6,0.8,1]; t=[1:8; 2:9]; e=[1,9]; n = length(p); % number of nodes m = size(t,2); % number of elements.
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 32.
Unit #1 Linear Systems Fall Dr. Jehad Al Dallal.
Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00.
Iterative Solution Methods
Parallel Direct Methods for Sparse Linear Systems
Introduction to the Finite Element Method
Sturm-Liouville Theory
Scientific Computing Lab
Iterative Methods Good for sparse matrices Jacobi Iteration
Pressure Poisson Equation
Scientific Computing Lab
MATLAB EXAMPLES Matrix Solution Methods
Matrix Methods Summary
Numerical Computation and Optimization
Introduction to Scientific Computing II
Numerical Analysis Lecture13.
Numerical Linear Algebra
Introduction to Scientific Computing II
Numerical Methods on Partial Differential Equation
Major: All Engineering Majors Authors: Autar Kaw
Lecture 8 Matrix Inverse and LU Decomposition
Home assignment #3 (1) (Total 3 problems) Due: 12 November 2018
Presentation transcript:

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 12th Lecture / 12. Vorlesung Universität Kassel Fachbereich Elektrotechnik / Informatik (FB 16) Fachgebiet Theoretische Elektrotechnik (FG TET) Wilhelmshöher Allee 71 Büro: Raum 2113 / 2115 D Kassel Dr.-Ing. René Marklein University of Kassel Dept. Electrical Engineering / Computer Science (FB 16) Electromagnetic Field Theory (FG TET) Wilhelmshöher Allee 71 Office: Room 2113 / 2115 D Kassel

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / FIT Discretization of the 3rd and 4th Maxwell’s Equation / FIT-Diskretisierung der 3. und 4. Maxwellschen Gleichung Governing Analytic Equations Maxwell’s equations in integral form / Maxwellsche Gleichungen in Integralform FIT Grid Equations Maxwell’s grid equations / Maxwellsche Gittergleichungen

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall Electric Gauss’ grid equation – 3rd Maxwell’s grid equation in global matrix form / Elektrische Gaußsche Gittergleichung – 3. Maxwellsche Gittergleichung in globaler Matrixform Inhomogeneous, anisotropic case / Inhomogener anisotroper Fall Homogeneous, isotropic case / Homogener isotroper Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall Inhomogeneous, anisotropic case / Inhomogener anisotroper Fall Homogeneous, isotropic case / Homogener isotroper Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / FIT Discretization of Scalar Electric Potential / FIT-Diskretisierung des skalaren elektrischen Potentials Integral form / Integralform Differential form / Differentialform FIT grid equation / FIT-Gittergleichung

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / FIT Discretization of Scalar Electric Potential / FIT-Diskretisierung des skalaren elektrischen Potentials Integral form / Integralform

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / FIT Discretization of Scalar Electric Potential / FIT-Diskretisierung des skalaren elektrischen Potentials

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall Electrostatic Poisson’s grid equation / Elektrostatische Poissonsche Gittergleichung Inhomogeneous, anisotropic case / Inhomogener anisotroper Fall Homogeneous, isotropic case / Homogener isotroper Fall with / mit

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall Electrostatic Poisson’s grid equation / Elektrostatische Poissonsche Gittergleichung

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall Electrostatic Poisson’s grid equation / Elektrostatische Poissonsche Gittergleichung

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Discrete Poisson’s Grid Equation / Diskrete Poissonsche Gittergleichung

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / D FIT – Electrostatic Case / 3D-FIT – Elektrostatischer Fall Electrostatic Poisson’s grid equation / Elektrostatische Poissonsche Gittergleichung Homogeneous isotropic case for a cubic grid complex / Homogener isotroper Fall für ein kubischen Gitterkomplex Electrostatic Poisson’s grid equation / Elektrostatische Poissonsche Gittergleichung

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Band Structure of the Div-Grad-Operator in Matrix Form / Bandstruktur des Div-Grad-Operators in Matrixform

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Band Structure of the Div-Grad-Operator in Matrix Form / Bandstruktur des Div-Grad-Operators in Matrixform

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Band Structure of the Div-Grad-Operator in Matrix Form / Bandstruktur des Div-Grad-Operators in Matrixform 3-D case / 3D-Fall 3-D case / 3D-Fall 2-D case in the xz plane / 2D-Fall in der xz -Ebene 2-D case in the xz plane / 2D-Fall in der xz -Ebene

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods for Linear Systems / Numerische Methoden für lineare Gleichungssysteme One the simplest type of iterative methods for solving the linear system / Einer der einfachsten Typen von iterativen Methoden zur Lösung des linearen Gleichungssystems Jacobi method (J method) / Jacobi-Methode (J-Methode) Gauss-Seidel method (GS method) / Gauß-Seidel-Methode (GS-Methode) Successive overrelaxation method (SOR method) / Überrelaxationsverfahren (SOR-Methode) Symmetric successive overrelaxation method (SSOR method) / Symmetrisches Überrelaxationsverfahren (SSOR-Methode) Jacobi method (J method) / Jacobi-Methode (J-Methode) Gauss-Seidel method (GS method) / Gauß-Seidel-Methode (GS-Methode) Successive overrelaxation method (SOR method) / Überrelaxationsverfahren (SOR-Methode) Symmetric successive overrelaxation method (SSOR method) / Symmetrisches Überrelaxationsverfahren (SSOR-Methode) Gaussian elimination (Gauss method) / Gaußsches Eliminationsverfahren (Gauß-Methode) Conjugate gradient method (CG method) / Konjugierte Gradientenmethode (KG-Methode) Multi grid methods (MG method) / Mehrgitterverfahren (MG-Methode) Algebraic multi grid method (AMG method) / Algebraische Mehrgitterverfahren (AMG-Methode) Conjugate gradient method (CG method) / Konjugierte Gradientenmethode (KG-Methode) Multi grid methods (MG method) / Mehrgitterverfahren (MG-Methode) Algebraic multi grid method (AMG method) / Algebraische Mehrgitterverfahren (AMG-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods for Linear Systems / Numerische Methoden für lineare Gleichungssysteme Algebraic multi grid method (AMG method) / Algebraische Mehrgitterverfahren (AMG-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods for Linear Systems / Numerische Methoden für lineare Gleichungssysteme Algebraic multi grid method (AMG method) / Algebraische Mehrgitterverfahren (AMG-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Iterative Methods for Linear Systems / Iterative Methoden für lineare Gleichungssysteme LU decomposition of matrix [A] / LU-Zerlegung der Matrix [A] Lower triangular matrix / Unter Dreiecksmatrix Main diagonal matrix / Hauptdiagonalmatrix Upper triangular matrix / Obere Dreiecksmatrix

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Iterative Methods for Linear Systems / Iterative Methoden für lineare Gleichungssysteme Jacobi method (J method) / Jacobi-Methode (J-Methode) Gauss-Seidel method (GS method) / Gauß-Seidel-Methode (GS-Methode) Successive overrelaxation method (SOR method) / Überrelaxationsverfahren (SOR-Methode) Symmetric successive overrelaxation method (SSOR method) / Symmetrisches Überrelaxationsverfahren (SSOR-Methode) Jacobi method (J method) / Jacobi-Methode (J-Methode) Gauss-Seidel method (GS method) / Gauß-Seidel-Methode (GS-Methode) Successive overrelaxation method (SOR method) / Überrelaxationsverfahren (SOR-Methode) Symmetric successive overrelaxation method (SSOR method) / Symmetrisches Überrelaxationsverfahren (SSOR-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Jacobi Method / Jacobi-Methode It follows with the LU decomposition of matrix [A] / Mit der LU-Zerlegung der Matrix [A] folgt

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Jacobi Method / Jacobi-Methode 2-D case in the xz plane / 2D-Fall in der xz -Ebene 2-D case in the xz plane / 2D-Fall in der xz -Ebene

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Jacobi & Gauss-Seidel Method / Jacobi- & Gauss-Seidel-Methode

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Successive Overrelaxation Method (SOR Method) / Überrelaxationsverfahren (SOR-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Successive Overrelaxation Method (SOR Method) / Überrelaxationsverfahren (SOR-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Successive Overrelaxation Method (SOR Method) / Überrelaxationsverfahren (SOR-Methode)

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Symmetric Successive Overrelaxation Method (SSOR Method) / Symmetrische Überrelaxationsverfahren (SSOR-Methode) Forward SOR step / Vorwärts-SOR-Schritt Backward SOR step / Rückwärts-SOR-Schritt

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Convergence of Point Iterative Methods / Konvergenz von punktiterativen Methoden

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Error Vector and Error Measure / Fehlervektor und Fehlermaß Symmetric positive definite [A] matrix / Symmetrische positiv-definite [A] Matrix Approximation for a D-dimensional Dirichlet problem / Approximation für ein D-dimensionales Dirichlet-Problem

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Optimal Relaxation / Optimaler Relaxationsparameter

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Medium (2) Medium (1) Medium Transition Conditions / Übergangsbedingungen Boundary Conditions / Randbedingungen Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Boundary conditions for the electrostatic potential / Randbedingungen für die elektrostatische Potential Medium Electrostatic (ES) Fields / Elektrostatische (ES) Felder Dirichlet Boundary Condition for Ф e / Dirichlet-Randbedingung für Ф e Neumann Boundary Condition for Ф e / Neumann-Randbedingung für Ф e

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Example: 2-D Dirichlet Problem / Beispiel: 2D-Dirichlet-Problem Dirichlet boundary condition for Ф e / Dirichlet-Randbedingung für Ф e

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Example: 2-D Dirichlet Problem / Beispiel: 2D-Dirichlet-Problem

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Example: 2-D Dirichlet Problem / Beispiel: 2D-Dirichlet-Problem

Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / End of Lecture 12 / Ende der 12. Vorlesung