1 Reunion SOS nanotube12 13 octobre 2011 H. Okuno, J. Dijon, E. De Vito, E. Quesnel CEA Grenoble Liten-DTNM SOS nanotubes 12-13 octobre 2011.

Slides:



Advertisements
Similar presentations
S.M. Deambrosis*^, G. Keppel*, N. Pretto^, V. Rampazzo*, R.G. Sharma°*, F. Stivanello* and V. Palmieri*^ Padova University, Material Science Dept * INFN.
Advertisements

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Thermo-compression Bonding
Metal Dusting Corrosion in Steam Reforming Plants
CHAPTER 8: THERMAL PROCESS (continued). Diffusion Process The process of materials move from high concentration regions to low concentration regions,
The Effect of Pressure on the Microstructure and Mechanical Properties of Spark Plasma Sintered Silicon Nitride Anne Ellis, Leah Herlihy, William Pinc,
Wafer Preparation Challenge in epitaxial growth : - Achieving defect free films at low temperate. More than half of the yield loss is due to contamination.
Epitaxial growth of SiC on Si covered by SiC nanocrystals G
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Techniques of Synthesizing Wafer-scale Graphene Zhaofu ZHANG
Metal-free-catalyst for the growth of Single Walled Carbon Nanotubes P. Ashburn, T. Uchino, C.H. de Groot School of Electronics and Computer Science D.C.
Mechanisms of single-walled carbon nanotube growth and deactivation from in situ Raman measurements Laboratoire des Colloïdes, Verres et Nanomatériaux.
Effect of Environmental Gas on the Growth of CNT in Catalystically Pyrolyzing C 2 H 2 Minjae Jung*, Kwang Yong Eun, Y.-J. Baik, K.-R. Lee, J-K. Shin* and.
NIST ARDA/DTO review 2006 Materials David P. Pappas Seongshik Oh Jeffrey Kline.
Carbon Nanotube Electronics
NWAPS-May Evolution of Ni-Al interface alloy for Ni deposited on Al surfaces at room temperature R. J. Smith and V. Shutthanandan* Physics Department,
Microelectronics & Device Fabrication. Vacuum Tube Devices Thermionic valve Two (di) Electrodes (ode)
Chemical Vapor Deposition ( CVD). Chemical vapour deposition (CVD) synthesis is achieved by putting a carbon source in the gas phase and using an energy.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #5.
Thin Film Deposition Prof. Dr. Ir. Djoko Hartanto MSc
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Nanomaterials - carbon fullerenes and nanotubes Lecture 3 郭修伯.
The wondrous world of carbon nanotubes Final Presentation IFP 2 February 26, 2003.
Surface MEMS 2014 Part 1
Fabrication of Silicon Nanocones Using RF Microplasma Jet at Atmospheric Pressure 18th SYMPOSIUM ON PLASMA SCIENCE FOR MATERIALS (SPSM-18) ○ Zhongshi Yang.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #2. Chip Fabrication  Silicon Ingots  Wafers  Chip Fabrication Steps (FEOL, BEOL)  Processing Categories 
M. CuffianiIPRD04, Siena, May A novel position detector based on nanotechnologies: the project M. Cuffiani M. C., G.P. Veronese (Dip. di Fisica,
 The way in which nanotubes are formed is not exactly known. The growth mechanism is still a subject of controversy, and more than one mechanism might.
KVS 2002 Activated Nitrogen Effect in Vertically Aligned CNT Tae-Young Kim, Kwang-Ryeol Lee, Kwang-Yong Eun * Future Technology Research Division, Korea.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Department of Chemistry-BK 21, SungKyunKwan Univ.
NEEP 541 – Radiation Damage in Steels Fall 2002 Jake Blanchard.
EE235 Presentation I CNT Force Sensor Ting-Ta YEN Feb Y. Takei, K. Matsumoto, I. Shimoyama “Force Sensor Using Carbon Nanotubes Directly Synthesized.
POSTER TEMPLATE BY: Fabrication of Nanobiosensors Tom Fitzgerald, Nathan Howell, Brian Maloney Oregon State University, Department.
ISAT 436 Micro-/Nanofabrication and Applications Thermal Oxidation David J. Lawrence Spring 2004.
S. Girshick, U. Minnesota Aluminum Nanoparticle Synthesis and Coating Steven L. Girshick University of Minnesota.
Epitaxial superconducting refractory metals for quantum computing
ALD Thin Film Materials LDRD review 2009NuFact09.
1 Institute of Isotopes, Budapest, Hungary; 2 Research Institute for Technical Physics and Materials Science, Budapest Hungary; 3 Chemical Physics of Materials,
+ Analysis of Anomalous Film Growth when Yttrium Oxide Thin Films are Exposed to 7.2eV Light Alison Wells Dr. David D. Allred Devon Mortenson Kristal Chamberlain.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Sep – 18, 2013.
Ion Beam Analysis of the Composition and Structure of Thin Films
Carbon Nanotube Growth Enhanced by Nitrogen Incorporation Tae-Young Kim a), Kwang-Ryeol Lee, Kwang Yong Eun and Kyu-Hwan Oh a) Future Technology Research.
N.Vamsi Krishna Bore, M.T.; Pham, H. N.; Switzer, E. E.; Ward, T. L.; Fukuoka, A.; Datye, A. K. J. Phys. Chem. B 2005, 109, 2873.
CARBON NANOTUBES By ANIKET KANSE
The International Conference of Metallurgical Coating and Thin Films ICMCTF 2003 Tae-Young Kim a)b), Kwang-Ryeol Lee a), Seung-Cheol Lee a), Kwang Yong.
11/8/ Plasma Assisted Surface Modification: Low Temperature Bonding SFR Workshop November 8, 2000 Yonah Cho, Adam Wengrow, Chang-Han Yun Nathan Cheung.
Origin of unusual Ag diffusion profiles in CdTe 1 J. Lehnert, M. Deicher, K. Johnston, Th. Wichert, H. Wolf Experimentalphysik, Universität des Saarlandes,
Nanotechnology Ninad Mehendale.
The composition and structure of Pd-Au surfaces Journal of Physical Chemistry B, 2005, 109, C. W. Yi, K. Luo, T. Wei, and D. W. Goodman Bimetallic.
Atomic layer deposition Chengcheng Li 2013/6/27. What is ALD ALD (Atomic Layer Deposition) Deposition method by which precursor gases or vapors are alternately.
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Mar 24 th, 2016 Inorganic Material Chemistry. Gas phase physical deposition 1.Sputtering deposition 2.Evaporation 3.Plasma deposition.
PRESENTED BY : AJIT BEHERA National institute of technology, Rourkela.
Nano Graduate School (NGS-NANO) Meeting Sep. 10 Lammi Prasantha R. Mudimela NanoMaterials Group TKK.
Semiconducting  -FeSi 2 Presented by Srujana Aramalla.
Professor: Chang-Ning Huang Student: Chao-Hsiang Yeh Reporting date: 2015 / 12/ 23.
Presenter : Shin Dong-Jun1 Xu Gao2, Shigeru Ueda2, Shin-ya Kitamura2
Basic Planar Processes
Y. Zhu, C. L. Yuan, S. L. Quek, S. S. Chan, and P. P. Ong
Fabrication Process terms
MBE Growth of Graded Structures for Polarized Electron Emitters
Introduction Thin films of hydrogenated amorphous silicon (a-Si:H) are used widely in electronic, opto-electronic and photovoltaic devices such as thin.
Metallization.
Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional (Cinvestav IPN) Palladium Nanoparticles Formation in Si Substrates from.
NOVEL TRENDS IN FUEL AND MATRIX ALLOYING TO REDUCE INTERACTION
IC AND NEMS/MEMS PROCESSES
Synthesis and Applications of Semiconductor Nanowires
Microstructures for Temperature Uniformity Mapping during PECVD
Presentation transcript:

1 Reunion SOS nanotube12 13 octobre 2011 H. Okuno, J. Dijon, E. De Vito, E. Quesnel CEA Grenoble Liten-DTNM SOS nanotubes octobre 2011

2 Reunion SOS nanotube12 13 octobre 2011 Outline  XPS results: role of the substrate and of the gas phase on the catalyst reduction  Cross section of Si/Fe sample before and after annealing  Dense Carpet of SW last results  Next steps

3 Reunion SOS nanotube12 13 octobre 2011 XPS analysis  Objective: determine the role of the substrate and gas phase on the oxidation state of the catalyst just before growth  Role of the substrate Vacuum annealing XPS Plasma pretreatment vacuum transfer ( Before TT) ( After TT)

4 Reunion SOS nanotube12 13 octobre 2011 New preparation chamber  Role of the gas phase Annealing under reactive atmosphere XPS Plasma pretreatment vacuum transfer Process gas H 2, He, C 2 H 2 Gas lines installed H 2, He operational C 2 H 2 we are waiting for the bottle First experiments

5 Reunion SOS nanotube12 13 octobre 2011 Samples Oxide substrate Metallic substrate HF de-oxidation of Si or Al 1nm Fe by e beam or IBS 10, 20nm Al 2 O 3 or SiO 2 Si or Al Si SiO 2 or Al 2 O 3

6 Reunion SOS nanotube12 13 octobre 2011 Summary of the results after plasma before TT Oxide substrate Metallic substrate SiO 2 Si Al 2 O 3 Al With plasma FeIII FeII Fe° w/o plasma

7 Reunion SOS nanotube12 13 octobre 2011 Summary  Before annealing Fe fully oxidized on Al 2 O 3, SiO 2 Slightly reduced on Al Partially oxidized on Si Si <Al< SiO 2 =Al 2 O 3 Iron oxidation Initial state Plasma pre treatment important on Fe°/Fe(II+III) content and CNT growth

8 Reunion SOS nanotube12 13 octobre 2011 Summary of the results after TT (600°C) Oxidized substrate Metallic substrate SiO 2 Si Al 2 O 3 Al Fe° Low reduction oxide After TT before TT Fe3+Fe2+

9 Reunion SOS nanotube12 13 octobre 2011 Summary  After thermal annealing (600°C) Fe partly reduced (FeII+FeIII) on Al 2 O 3, SiO 2 Mostly reduced on Si (Fe°+FeII) Totally reduced Fe° on Al Fe reduction final state Al 2 O 3 <SiO 2 <Si<Al Fe x O y reduction in solid phase by Si and Al

10 Reunion SOS nanotube12 13 octobre 2011 Reduction of oxidized iron by silicon and aluminum is allowed by thermodynamic Si+O2 Fe+O2 Higher stability Al+O2 Better reduction with Al

11 Reunion SOS nanotube12 13 octobre 2011 Sample cross section before and after annealing

12 Reunion SOS nanotube12 13 octobre 2011 Our sample: 5nm Si, 2 nm Fe after Deposition Step 1 (Room temperature) c_Si a_Si Fe (oxidized) Protective layer SiO 2

13 Reunion SOS nanotube12 13 octobre 2011 Sample cross section after annealing (Step 3) just before Growth (1) Catalyst nano particle

14 Reunion SOS nanotube12 13 octobre 2011 Fe+O Sample cross section after annealing (Step 3) just before Growth (2) Fe Si O Fe+Si Si+O a_Si Formation of an oxide layer below the iron layer Formation of a silicide layer below the oxide layer

15 Reunion SOS nanotube12 13 octobre 2011 Possible Mechanism Initial system (room Temp) Iron diffusion: Silicide Medium T(300°C): Diffusion of Fe in Si and silicide formation Final T(600°C) Reduction of Fe by Silicon formation of SiOx SiOx formation After plasma step some Metal is still detected by XPS at Room Temp a-Si Si Fe 2 O 3 a-Si silicide

16 Reunion SOS nanotube12 13 octobre nm 2.6nm SW + DW avec de petits diametres: SW carpet   Fe = 0.37 nm/Al2O3 Tube diameter is too large for chirality analysis By Raman

17 Reunion SOS nanotube12 13 octobre 2011 SW carpet new process  Fe = 0.37 nm/Al2O3 2.7 nm Carpet of SW diametres: < 3 nm Decrease the tube diameter…

18 Reunion SOS nanotube12 13 octobre 2011 SW carpet process Improvement  Fe = 0.37 nm/Al2O3 OBJECTIVE for next step: -Increase the small tube content (~ 1 nm) -Chirality measurement / metallic composition (Samples available) -Control of metallic content should be input into the process (how?) 3.7 nm 1.1 nm 3.1 nm 1.2 nm Dense SW avec 2 types de diametres: 3 – 4 nm ~ 1 nm

19 Reunion SOS nanotube12 13 octobre 2011 Conclusions Substrate / Catalyst study  Reduction of Fe is important on Si and Al at high temperature. (completely reduced on Al)  Metallic Fe is observed on Si after plasma treatment at room temperature.  Diffusion of Fe through Si with a formation of silicide. CNT growth control  Dense carpet consisting of only SWNTs is realized.  Appearance of 1 nm diameter SWNTs is observed. To realize a dense carpet with only 1 nm tubes… Fe-Co Chirality analysis !!!! Post-doc??