Beam pipe impedance vs. Frequency 22 July 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 1 An artifact,

Slides:



Advertisements
Similar presentations
1 Resistive wall wake field and extraction jitter in the ILC damping ring Kai Hock and Andy Wolski 5 th Wakefield Interest Group Meeting, 24 July 2008.
Advertisements

Using the real lattice and an improved model for the wake field, the extraction jitter can now be calculated more accurately. Assuming an injection jitter.
Damping Rings Impedance budget and effect of chamber coating
Measurements of adiabatic dual rf capture in the SIS 18 O. Chorniy.
1 Accelerator Physics Aspects LHCb Accelerator Physics Aspects LHCb CERN SL/AP n Layout n Crossing Scheme n Luminosity n Collision.
March 14-15, 2007ECloud Feedback, IUCF1 Electron-Cloud Effects in Fermilab Booster K.Y. Ng Fermilab Electron-Cloud Feedback Workshop IUCF, Indiana March.
Ion instability at SuperKEKB H. Fukuma (KEK) and L. F. Wang (SLAC) ECLOUD07, 12th Apr. 2007, Daegu, Korea 1. Introduction 2. Ion trapping 3. Fast ion instability.
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Helmholtz International Center for Oliver Boine-Frankenheim GSI mbH and TU Darmstadt/TEMF FAIR accelerator theory (FAIR-AT) division Helmholtz International.
SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
Effects of wake fields in ATF2 low aperture kicker and IP nano-BPMs Karl Bane April 19, 2005.
SPS impedance work in progress SPSU meeting August 11 th 2011.
Finite wall wake function Motivation: Study of multi-bunch instability in damping rings. Wake field perturbs Trailing bunches OCS6 damping ring DCO2 damping.
Eirini Koukovini-Platia EPFL, CERN Impedance budget and effect of chamber coating on CLIC DR beam stability LCWS2012, E. Koukovini-Platia, 25/10/12 1 C.
Eirini Koukovini-Platia EPFL, CERN
Oliver Boine-FrankenheimSIS100-4: High current beam dynamics studies SIS 100 ‘high current’ design challenges o Beam loss in SIS 100 needs to be carefully.
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
Beam observation and Introduction to Collective Beam Instabilities Observation of collective beam instability Collective modes Wake fields and coupling.
Simulation of Beam Instabilities in SPring-8 T. Nakamura JASRI / SPring-8
Update of the SPS transverse impedance model Benoit for the impedance team.
Higher-Order Modes and Beam-Loading Compensation in CLIC Main Linac Oleksiy Kononenko BE/RF, CERN CLIC RF Structure Development Meeting, March 14, 2012.
Elias Métral, LHC Beam Commissioning Working Group meeting, 08/06/2010 /191 SINGLE-BUNCH INSTABILITY STUDIES IN THE LHC AT 3.5 TeV/c Elias Métral, N. Mounet.
Lecture 25 - E. Wilson - 12/15/ Slide 1 Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
BEPCII Transverse Feedback System Yue Junhui Beam Instrumentation Group IHEP , Beijing.
PyHEADTAIL-PyECLOUD Simulations for LHC and HL- LHC Aaron Axford 27/05/20151.
Injection Energy Review D. Schulte. Introduction Will review the injection energy So could answer the following questions: Which injection energy can.
Impedance of the CLIC-DRs: What we know so far and what else we need to study…. E. Koukovini-Platia M. Barnes, A. Grudiev, N. Mounet, Y. Papaphilippou,
Beam Dynamics and Instabilities in MEIC Collider Rings Byung C Yunn Jefferson Lab Newport News, Virginia, USA.
Example: Longitudinal single bunch effects Synchrotron tune spread Synchrotron phase shift Potential well distortion Energy spread widening (microwave.
Elias Métral, SPSU Study Group and Task Force on SPS Upgrade meeting, 25/03/2010 /311 TMCI Intensity Threshold for LHC Bunch(es) in the SPS u Executive.
Elias Métral, LHC Beam Commissioning Working Group meeting, 30/11/2010 /241 PRELIMINARY FINDINGS FROM INSTABILITY MEASUREMENTS DURING THE 75ns AND 50ns.
Frank Zimmermann, material for LTC coherent tune shift due to collimator impedance - its dependence on gap size, bunch length, chromaticity, beta function,
1 Instabilities and Phase Space Tomography in RR Alexey Burov RR Talk May
Update on new triplet beam screen impedance B. Salvant, N. Wang, C. Zannini 7 th December 2015 Acknowledgments: N. Biancacci, R. de Maria, E. Métral, N.
INTENSITY LIMITATIONS IN THE LHC INJECTORS Discussion on Landau damping Ibon Santiago González Summer Student Session 2007.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Elias Métral, LHC collimation working group meeting, 17/07/061/26 E. Métral for the RLC team LATEST ESTIMATES OF COLLIMATOR IMPEDANCE EFFECTS u Reminder:
6 July 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Sabrina Appel | 1 Micro bunch evolution and „turbulent beams“
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
1 BROOKHAVEN SCIENCE ASSOCIATES FCC Week 2016 Rome, April 2016 Collective Effects in Low-Emittance Rings: Projection for FCC Victor Smaluk NSLS-II,
Experiments on Fast Ion Instability at PLS
Beam Instability in High Energy Hadron Accelerators and its Challenge for SPPC Liu Yu Dong.
Instability issues in CEPC
Longitudinal impedance of the SPS
FAIR high intensity beam dynamics
Proposals for 2015 impedance-related MD requests for PSB and SPS
A. Al-khateeb, O. Chorniy, R. Hasse, V. Kornilov, O. Boine-F
Impedance model and collective effects
FCC-ee: coupling impedances and collective effects
Observations with different bunch spacings
LHC at 7 TeV/c: comparison phase 1 / IR3MBC
E. Métral, N. Mounet and B. Salvant
Invited talk TOAC001 ( min, 21 slides)
TCTP the CST side F. Caspers, H. Day, A. Grudiev, E. Metral, B. Salvant Acknowledgments: R. Assmann, A. Dallocchio, L. Gentini, C. Zannini Impedance Meeting.
N. Mounet, G. Rumolo and E. Métral
LHC COLLIMATOR IMPEDANCE
G. Arduini, R. Calaga, E. Metral, G. Papotti, G. Rumolo, B. Salvant, R
STABILITY OF THE LONGITUDINAL BUNCHED-BEAM COHERENT MODES
Progress in the design of a damped an
LHC impedance: Comparison between phase 1 and IR3MBC – follow-up
Study of Fast Ions in CESR
Some results on the LHC multibunch modes at 7 TeV/c
Impedance analysis for collimator and beam screen in LHC and Resistive Wall Instability Liu Yu Dong.
Power loss in the LHC beam screen at 7 TeV due to the multi-layer longitudinal impedance N. Mounet and E. Métral Goal: Check the effect of the multi-layer.
Collective effects in the SPS and LHC (longitudinal plane)
LHC collimation review follow-up Impedance with IR3MBC option & comparison with phase 1 tight settings N. Mounet, B. Salvant and E. Métral Acknowledgements:
ESRF Experimental Contribution Towards Working Group Introduction
Presentation transcript:

Beam pipe impedance vs. Frequency 22 July 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 1 An artifact, due to numerical cancelation at high gamma Coating with Copper at 50K, k=6e9 S/m x2.0 Skindepth=coating thickness 80um

Growth rates vs. Energy 22 July 2015 | TU Darmstadt | Fachbereich 18 | Fachgebiet Beschleunigerphysik | Fedor Petrov | 2 *N. Mounet, 3 TeV, 20 K Realistic half-gap ∈ [12 mm, 18 mm] Multi-bunch and single bunch growth rates: - Growth rates for bunch trains (empty buckets) using detailed (2D) impedance results. - Landau damping by octupoles (coupled bunch) -> thresholds with octupoles and feedback vs. energy Beam becomes more stable, but feedback is weaker. Needed if possible: 1. Resistance data for K ( factor 2-3 uncertainty) 2. Feedback rates vs. Energy Scaling to larger energies

Resistive wall Impedance with thick Cu 22 July 2015 | TU Darmstadt | Fachbereich 18 | Fachgebiet Beschleunigerphysik | Oliver Boine-Frankenheim | 3

Comparison with round pipe impedance  Vertical 22 July 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 4 An artifact, due to numerical cancelation at high gamma X1.4 Skindepth=coating thickness 80 um (1 meter pipe)

Coupled bunch resistive instability 22 July 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 5 Pipe only, solid Cu 50K E=3TeV N. Mounet, EPFL Lausanne, formerly CERN most unstable coupled-bunch mode at lowest frequency=2kHz Most critical at injection due to less stiff beam! Growth rate by factor 1.6 higher for 80 um coating Required thickness for “thick wall“ 150 um for 50K 450 um for 140K

Scenario Data 22 July 2015 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 6 ▪E=3TeV ▪Q s = ▪M=13344 (25ns) ▪rms bunch length 8 cm ▪N b =1.0e11 ▪Q x = ▪Q y = ▪Chroma=0 ▪E=50TeV ▪Q s =0.0078