Capture Simulation for ILC Electron-Driven Positron Source Y. Seimiya, M. Kuriki, T. Okugi, T. Omori, M. Satoh, J. Urakawa, and S. Kashiwagi 14 May 2014.

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

ILC positron source simulation update Wanming Liu, Wei Gai ANL 03/20/2011.
Overview of 300 Hz Conventional e + Source for ILC Truly Conventional Collaboration ANL, IHEP, Hiroshima U, U of Tokyo, KEK, DESY, U of Hamburg NIM A672.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
Preliminary result on Quarter wave transformer simulation a short lens with a high magnetic field and a long solenoidal magnetic field. Field profile of.
Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., Nov KEK, Junji.
Demonstration of the Beam loading compensation (Preparation status for ILC beam loading compensation experiments at ATF injector in this September) (PoP.
Conventional Source for ILC (300Hz Linac scheme and the cost) Junji Urakawa, KEK LCWS2012 Contents : 0. Short review of 300Hz conventional positron source.
16 th June 2008 POSIPOL 2008L. Rinolfi / CERN CLIC e + sources status L. Rinolfi with contributions from F. Antoniou, H. Braun, A. Latina, Y. Papaphilippou,
R.Chehab/Posipol2008/Hiroshima, june POSITRON SOURCES USING CHANNELING FOR ILC & CLIC R.Chehab, X.Artru, M.Chevallier, IPNL/IN2P3/CNRS, Universite.
300 Hz e + Generation for ILC MM with advanced conventional e + sources T. Omori (KEK) 17-Nov-2008, GDE meeting, Chicago Many thanks to Chehab-san, Logachev-san,Urakawa-san,
ILC e+ 源の現状 2 29-June-2015, ADI-J meeting T. Omori.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Low Emittance RF Gun Developments for PAL-XFEL
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
1 Positron Target R&D at KEK Plan and Status AD&I Meeting 2009/8/27 KEK Hybrid Target Test at KEKB Linac Liquid Lead Target Test at ATF Linac Window Test.
Discussion for Keep Alive Source /Auxiliary Positron Source KURIKI Masao Hiroshima U. /KEK 10/25/2011 ILC Technical Baseline Review, 2011, DESY 1.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
Key luminosity issues of the positron source Wei Gai.
Positron Source General Update M. Kuriki(Hiroshima U./KEK) ALCW2015, April 2015,Tsukuba/Tokyo, Japan.
E + ソースの現状 大森 GDE 活動報告会 2008 年 6 月 23 日 シカゴ GDE meeting に向けて 大森 GDE 活動報告会 2008 年 10 月 6 日 かなりの数のスライドが、栗木さんが先ごろ大邱 "2nd Asia ILC R&D Seminar, Sep 29-30,
Ideas for e+ source and e+ polarization 29-May-2013 ECFA LC Workshop at DESY T. Omori.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
9/24-26/07 e- KOM Slide 1/20 ILC Polarized e- source RDR Overview A. Brachmann.
A Report from PosiPol2015 to AD&I meeting (10 Sep. 2015) Masao KURIKI (Hiroshima University)
常伝導技術での LC の可能性 LC feasibility consideration with normal conducting technology 第5回「機構の研究推進について」の意見交 換会 (ILC の推進について ) 平成 24 年 2 月 13 日 加速器・肥後寿泰.
Beam Loading experiment at KEK ATF ( Multi-train acceleration at KEK-ATF Injector ) KEK Masafumi Fukuda and Junji Urakawa LCWS /10/052 train acceleration.
ParameterL-bandS-bandX-band Length (m) Aperture 2a (mm) Gradient (Unloaded/Loaded) (MV/m)17/1328/2250/40 Power/structure (MW) Beam.
2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne L. Rinolfi Possible e - and e + sources for LHeC 1 Thanks to O. Brüning, A. Vivoli and F. Zimmermann.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Overview of 300 Hz Conventional e + Source for ILC T. Omori (KEK) 29-May-2013 ECFA LC Workshop at DESY Truly Conventional Collaboration ANL, IHEP, Hiroshima.
Status of the CLIC main beam injectors LCWS, Arlington, Texas, October 22 th -26 th, 2012Steffen Döbert, BE-RF Overview of the CLIC main beam injectors.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
27 th May 2009 CLIC ACE meetingL. Rinolfi CLIC Main Beam generation Baseline configuration only L. Rinolfi for the CLIC Injector complex team.
Target studies for the ILC 300 Hz conventional e + source 29-May-2013 ECFA LC Workshop at DESY T. Omori Target study team: K. Yokoya (KEK), J. Urakawa.
Positron capture simulation for 300Hz electrondriven scheme M. Kuriki, Y. Seimiya, T. Takahashi (Hiroshima U.) T. Okugi, M. Sato, J. Urakawa, T. Omori.
Conventional source developments (300Hz Linac scheme and the cost, Part-II) Junji Urakawa, KEK PosiPol-2012 at DESY Zeuthen Contents : 0. Short review.
Truly Conventional e + Source for ILC Special Thanks to Takahashi-san: About half of the slides are taken from Takahash-san's talk at ALCPG11 T. Omori.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
28 th August 2011 POSIPOL Workshop – IHEP-Beijing- ChinaL. Rinolfi Louis Rinolfi CLIC e + status.
X-band Based FEL proposal
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
R.Chehab/FCPPL2010/Lyon1 AN HYBRID POSITRON SOURCE FOR ILC -Collaboration IN2P3-IHEP, with BINP, KEK, Hiroshima-U, CERN- X.Artru, R.Chehab, M.Chevallier.
A.Variola Frascati SuperB meeting 1 Injector and positron source scheme. A.Variola, O.Dadoun, F Poirier, R.Chehab, P Lepercq, R.Roux, J.Brossard.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
Masao KURIKI (Hiroshima University)
Positron production rate vs incident electron beam energy for a tungsten target
Positron Source and Injector
Positron Sources of Next generation B-factories (SuperKEKB, SuperB)
Update on e+ Source Modeling and Simulation
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Positron capture section studies for CLIC Hybrid source - baseline
Status of the CLIC main beam injectors
NC Accelerator Structures
CLIC e+ status Louis Rinolfi.
Truly Conventional e+ Source for ILC
CLIC source update CLIC main beam injectors reminder
Capture and Transmission of polarized positrons from a Compton Scheme
Status of the CLIC Injector studies
CEPC Injector Damping Ring
CEPC Injector positron source
ATF project meeting, Feb KEK, Junji Urakawa Contents :
CEPC Injector positron source
CEPC injector beam dynamics
CEPC injector beam dynamics
Presentation transcript:

Capture Simulation for ILC Electron-Driven Positron Source Y. Seimiya, M. Kuriki, T. Okugi, T. Omori, M. Satoh, J. Urakawa, and S. Kashiwagi 14 May 2014

ILC is an international big project. It should be “fail-safe”. It should be implemented by the latest technology which is sometimes with unexpected risks. To control the risk, a technical back up is necessary. The e-driven e+ source is the backup. Why do we need e-driven e+?

The electron driven e+ source is however not “conventional”. Amount of e+ is 50 times larger than that for SLC. To implement the e+ source with the minimum risk, it should be designed in operable regime, 35 J/g PEDD (Peak Energy Deposition Density) on target. In this study, we demonstrate that an enough amount of e+ can be generated with this condition. Purpose of this study

Chart of Positron Source for ILC DR Capture Section Booster Linac e+e+ ECS Capture Section: AMD and solenoid up to several hundreds MeV (L-band). Booster Linac: Acceleration up to 5GeV (L-band+S-band). ECS ( Energy Compression System ) : matching in longitudinal phase space.

Chart of Positron Source for ILC DR Capture Section Booster Linac e+e+ ECS Yield(e+/e-): The number of e+/ The number of e- at the target Design guideline is Yield 1.5 (3.0e+10 e+) in DR acceptance (50% margin).

Capture Section Beam parameters & Target Drive beam energy6 GeV Beam size4.0 mm (RMS) Target thickness14 mm AMD Solenoid e-e- Target (rotate) e+e+ Accelerating Structure RF Gradient25 MV/m RF frequency1.3 GHz (L-band) Length10m Aperture (radius)20mm AMD parameters Max AMD field7 T Taper parameter60.1 /mm AMD length214 mm Solenoid Solenoid Field0.5 T Positron distribution at the exit of Capture Section Positron distribution simulated by GEANT4 just after the Target. (T. Takahashi) The number of e-: 1000, The number of e+: 12696

Booster Linac RF Peak Gradient40 MV/m RF frequency1.3 GHz (L-band) Length323.6 m Aperture (radius)17mm Basic structures are FODO cells consisted of 4 QMs and some RF. Positron distribution at the exit of Booster Linac

Energy Compression System (ECS) ECS RF Peak Gradient38 MV/m RF frequency1.3 GHz (L-band) Length90.5 m Aperture (radius)17mm Base structures are 3 chicanes and some RF. Positron distribution at the exit of ECS

Parameters for optimization 1.RF phase at Capture Section 2.RF phase at Booster Linac, ECS 3.Aperture at Capture Section 4.Aperture at Booster Linac, ECS 5.Aperture and magnetic strength at AMD, and distance between AMD and target 6.Drive beam energy, target thickness, and beam size 7.RF gradient at Capture Section 8.Positron energy at the exit of Capture Section Fix at the realistic largest aperture Optimized automatically small impact

Capture RF phase Aperture at Capture Section (X 2 +Y 2 ) 1/2 < 20 mm Aperture at Booster Linac (X 2 +Y 2 ) 1/2 < 17 mm Acceptance at DR  Longitudinal Acceptance: (E-E0)/E0 < 0.75 %, (z-z0) < 37.5 mm  Transverse Acceptance: (Wx+Wy)*γ < 70 mm Dec. capture Acc. capture Yield is Max. at 270 〜 310°

Adiabatic Matching Device (AMD) dZ AMD Aperture (≡R AMD ) : 6mm(radius) AMD Max. field strength (≡B AMD ) : 7T Place of B AMD and end surface of Target (≡dZ) : 5mm (giving 3.5T) Z (m) Bz (T)

AMD and Target configurations Yield is greatly depended on R AMD and dZ. But not so much on peak B AMD. Yield is saturated at dZ 8mm. B AMD =7T, dZ=3mm, and R AMD =8mm are a feasible parameter set. dZ=5mm dZ=3mm R AMD (mm)

Aperture in Booster Linac Capture eff. is saturated at 17mm. 17mm is optimum. c c

Drive beam and Target configuration ( 1 ) E=6GeV, T=20mm E=6GeV, T=14mm E=3GeV, T=14mm R AMD (mm) Ne=2.0e+10 (fixed). Yield is better for smaller spot size.

Drive beam and Target configuration ( 2 ) EnergyThicknessBeam sizePEDDYieldTotal deposit 3 GeV14 mm4mm15 J/g J 6GeV 14 mm4mm23 J/g J 20 mm4mm27 J/g J 3 GeV14 mm6mm 7 J/g J 6GeV 14 mm6mm10 J/g J 20 mm6mm12 J/g J Ne- =2.0e+10 R AMD =8mm

Larger spot size gives larger # of e+. 6GeV-thickness14mm might be optimum. Drive beam and Target configuration ( 3 ) E=6GeV, T=20mm E=6GeV, T=14mm E=3GeV, T=14mm R AMD (mm) # of positron giving PEDD 23 J/g.

Drive beam and Target configuration ( 4 ) EnergyThicknessBeam size# of cap. e+Total deposit 3 GeV14 mm4mm2.1× J 6GeV 14 mm4mm2.6× J 20 mm4mm2.6× J 3 GeV14 mm6mm2.9× J 6GeV 14 mm6mm3.4× J 20 mm6mm3.3× J PEDD=23 J/g, Ne- is scaled. R AMD =8mm

1-6 Cell = (2FODO +RF) 7~18Cell = (2FODO+2RF) 19~40Cell = (2FODO+ 4RF) 19Cell 20Cell (starting point of S-band) Exit of Booster Linac L-band(1~19)S-band(20~40) Replacing L-> S-band (1) Capture Section  L-band RF Aperture: 20 mm Booster Linac  L-band RF Aperture: 17 mm  S-band RF Aperture: 10 mm ECS Aperture: 17mm

L-band RF= 6+12*2+(Nc-18)*4 S-band RF= (40-Nc)*4 Nc=26 giving L-band: 62 and S-band: 56 Red: considered only S−band Aperture (1.3GHz) Green: considered S-band Aperture and RF frequency Replacing L->S-band (2) 1-6 Cell = (2FODO +RF) 7~18Cell = (2FODO+2RF) 19~40Cell = (2FODO+ 4RF) Nc :Cell number where S-band starts

Magnetic field distributions of FC Bz(T) Z(m) A=-1/6 ~ 1

Many electrons are also generated by the target. These electron are captured in RF phase opposite to that for positron. Total beam loading becomes roughly twice of that by positrons. The electrons can be eliminated by a chicane. However, the chicane at low energy causes a significant loss on the capture efficiency. The position of the chicane is compromised between the beam loading and the capture efficiency. Beam loading by electron

Positron Capture for ILC Electron-Driven Positron Source is simulated. Yield(e+/e-) is greatly depended on AMD aperture, target position, and beam size. When E=6GeV, T=20mm, σ>5mm, dZ=5mm, R AMD >7mm, and B AMD =5T, enough e+ is obtained. Yield is reduced greatly when FC field is distorted. Time variation should be carefully investigated. The chicane position should be optimized. SUMMARY

backup

RF phase dependence ( After Booster Linac ) Aperture of Capture Section (X 2 +Y 2 ) 1/2 < 0.02 m Aperture of Booster Linac (Transmitted): (X 2 +Y 2 ) 1/2 < m Longitudinal Cut: (E-E0)/E0 < 0.75% (z-z0) < 37.5 mm Transverse Cut: (Wx+Wy)*γ < 0.07 m Target is placed in maximum field of AMD (7T). Ignore AMD aperture

20 triplets, rep. = 300 Hz triplet = 3 mini-trains with gaps 44 bunches/mini-train, T b_to_b = 6.15 n sec DR T b_to_b = 6.15 n sec 2640 bunches/train, rep. = 5 Hz T b_to_b = 369 n sec e+ creation go to main linac Time remaining for damping = 137 m sec We create 2640 bunches in 63 m sec Booster Linac 5 GeV NC 300 Hz Drive Linac Several GeV NC 300 Hz Target Amorphous Tungsten Pendulum or Slow Rotation 2640 bunches 60 mini-trains Stretching Conventional e+ Source for ILC Normal Conducting Drive and Booster Linacs in 300 Hz operation

Beam after DR Extraction: fast kicker ( 3 ns kicker: Naito kicker) the same as the baseline

35J/g 500k 100k Parameter Plots for 300 Hz scheme PEDD J/g colored bandaccepted e+/e- there seems to be solutions dT max by a triplet 12345 e- directly on to Tungsten  =4.0mm Ne - (drive) = 2x10 10 /bunch

3-5m/sec required (1/20 of undulator scheme) 2 possible schemes being developed at KEK Moving Target 2013/8/30 ILC monthly, Yokoya 32 bellows seal vacuum air ferromagnetic fluid seal airvacuum 5Hz pendulum with bellows sealrotating target with ferromagnetic seal main issue: life of bellows main issue: vacuum First step prototype fabricated 今年度:既存のX線発生装置の基本構造を利用して 真空度(リークレート、到達真空度)など基礎実験 を行い、データを取る。オイルの対放射線特性デー ターも測定 H 26 − 27: ILC の実機とほぼ同じターゲットの 制作し真空試験。 KEK 工作センター、広大 リガク、原研高崎 KEK 、広大、 DESY, CERN, IHEP

Dependence on Drive beam size  of the Drive e- Beam (mm) 35J/g e+/e- =1.5, Ne - /bunch = 2x10 10