Cutnell/Johnson Physics 7 th edition Classroom Response System Questions Chapter 39 More about Matter Waves Reading Quiz Questions.

Slides:



Advertisements
Similar presentations
Arrangement of the Electrons Chapter 4 (reg.)
Advertisements

Aim: How can we explain energy transitions in an atom? Do Now: What were the limitations of the Rutherford model of the atom and how did the Bohr model.
Cutnell/Johnson Physics 7 th edition Classroom Response System Questions Chapter 40 All about Atoms Reading Quiz Questions.
1 Light as a Particle The photoelectric effect. In 1888, Heinrich Hertz discovered that electrons could be ejected from a sample by shining light on it.
Electromagnetic Radiation
 When a gas in a tube is subjected to a voltage, the gas ionizes, and emits light.  We can analyze that light by looking at it through a spectroscope.
Physics 6C Energy Levels Bohr Model of the Atom Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
1 Light as a Particle In 1888, Heinrich Hertz discovered that electrons could be ejected from a sample by shining light on it. This is known as the photoelectric.
1Recap. 2 Quantum description of a particle in an infinite well  Imagine that we put particle (e.g. an electron) into an “infinite well” with width L.
Bohr Model. Hydrogen Model  A hydrogen atom is a single electron and proton. One negative charge One positive charge  Assume that the discrete energies.
Light: oscillating electric and magnetic fields - electromagnetic (EM) radiation - travelling wave Characterize a wave by its wavelength,, or frequency,
Dr. Jie ZouPHY Chapter 42 Atomic Physics. Dr. Jie ZouPHY Outline Atomic spectra of gases Early models of the atom Bohr’s model of the hydrogen.
The Photoelectric Effect
Quantum Mechanics, part 3 Trapped electrons
Atomic Physics Introduction: Although the hydrogen atom is the simplest atomic system, it’s especially important for several reasons: The quantum numbers.
Physics 1C Lecture 29A.
Mark S. Cracolice Edward I. Peters Mark S. Cracolice The University of Montana Chapter 11 Atomic Theory: The Quantum.
Electronic Structure of Atoms Chapter 6 BLB 12 th.
Chapter 3 The Structure of the Atom In order to explain much of what is observed in chemistry, we need to adopt a model for the atom where the atom has.
CHAPTER 1: ATOMIC STRUCTURE CHEM210/Chapter 1/2014/01 An atom is the smallest unit quantity of an element that can exist on its own or can combine chemically.
Chapter 10: Modern atomic theory Chemistry 1020: Interpretive chemistry Andy Aspaas, Instructor.
PHY206: Atomic Spectra  Lecturer: Dr Stathes Paganis  Office: D29, Hicks Building  Phone: 
Physics Education Department - UNS 1 Planetary model of atom Positive charge is concentrated in the center of the atom (nucleus) Atom has zero net charge:
Physics Education Department - UNS 1 From Last Time… Light waves are particles and matter particles are waves! Electromagnetic radiation (e.g. light) made.
Review of 5.1: All waves have distinct amplitudes, frequency, periods and wavelengths. All electromagnetic waves travel at the speed of light. C = (3.0x10.
Arrangement of Electrons. Spectroscopy and the Bohr atom (1913) Spectroscopy, the study of the light emitted or absorbed by substances, has made a significant.
Chapter 7 The Quantum-Mechanical Model of the Atom
Arrangement of Electrons in Atoms Chapter 4. Properties of Light Electromagnetic Radiation- which is a form of energy that exhibits wavelength behavior.
Atomic Models Scientist studying the atom quickly determined that protons and neutrons are found in the nucleus of an atom. The location and arrangement.
Electrons in Atoms Chapter 5. Duality of Light Einstein proved that matter and energy are related E = mc 2 Einstein proved that matter and energy are.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Quantum Cloud Model Why did Bohr propose the orbit or planetary model? Why did Bohr propose the orbit or planetary model? He based it on experiments with.
From Democritus to now….  a Greek philosopher, proposed that matter was made up of small, hard, indivisible particles, which he called atoms.  Democritus.
Chapter 39 More About Matter Waves What Is Physics? One of the long-standing goals of physics has been to understand the nature of the atom. The development.
1 The Quantum Mechanical Model of the Atom Chapter 7.
The Bohr Model and the Quantum Mechanical Model of the Atom
28.3 THE BOHR THEORY OF HYDROGEN At the beginning of the 20th century, scientists were puzzled by the failure of classical physics to explain the characteristics.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
Historically, scientists have used their knowledge of atomic properties to develop and refine atomic models. Today, this knowledge is applied to various.
The Bohr Model of the Atom. The behavior of electrons in atoms is revealed by the light given off when the electrons are “excited” (made to absorb energy).
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 7 Lecture Lecture Presentation Chapter 7 The Quantum- Mechanical Model of the Atom Sherril Soman Grand Valley State University © 2014 Pearson Education,
Chapter 28:Atomic Physics
Chapter 5 Electrons in Atoms Chemistry Section 5.1 Light and Quantized Energy At this point in history, we are in the early 1900’s. Electrons were the.
Rutherford’s Model: Conclusion Massive nucleus of diameter m and combined proton mass equal to half of the nuclear mass Planetary model: Electrons.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4: Electron Configurations Development of New Atomic Model.
Chapter 7 The Quantum- Mechanical Model of the Atom.
Sydney Opera House Opens (1973) READING: Chapter 8 sections 1 – 2 READING: Chapter 8 sections 1 – 2 HOMEWORK – DUE TUESDAY 10/20/15 HOMEWORK – DUE TUESDAY.
The Nature of Light: Its Wave Nature Light is a form of made of perpendicular waves, one for the electric field and one for the magnetic field All electromagnetic.
Chapter 38C - Atomic Physics © 2007 Properties of Atoms Atoms are stable and electrically neutral.Atoms are stable and electrically neutral. Atoms have.
Physics 102: Lecture 24, Slide 1 Bohr vs. Correct Model of Atom Physics 102: Lecture 24 Today’s Lecture will cover Ch , 28.6.
Atomic Spectra and Electron Orbitals. The Classical Atom Electrons orbited the nucleus. Electrons orbited the nucleus. Problem!! Problem!! Accelerating.
Ch2 Bohr’s atomic model Four puzzles –Blackbody radiation –The photoelectric effect –Compton effect –Atomic spectra Balmer formula Bohr’s model Frank-Hertz.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Chapter 11 Notes Electrons in Atoms: Modern Atomic Theory.
Line Spectra When the particles in the solid, liquid, or gas accelerate, they will produce EM waves. Electron orbit to orbit transitions in atoms (gasses)
QUANTUM AND NUCLEAR PHYSICS. Wave Particle Duality In some situations light exhibits properties that are wave-like or particle like. Light does not show.
Chapter 5.  Energy transmitted from one place to another by light in the form of waves  3 properties of a wave;  Wavelength  Frequency  Speed.
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
Chapter 7 Atomic Structure.
Atomic Models Scientist studying the atom quickly determined that protons and neutrons are found in the nucleus of an atom. The location and arrangement.
What value of wavelength is associated with the Lyman series for {image} {image} 1. {image}
Derivation of the Rydberg Constant
General Physics (PHY 2140) Lecture 33 Modern Physics Atomic Physics
Electrons in Atoms Chapter 5.
Cutnell/Johnson Physics 7th edition
Bohr, Emissions, and Spectra
History of The Atomic Theory
More About Matter Waves
Presentation transcript:

Cutnell/Johnson Physics 7 th edition Classroom Response System Questions Chapter 39 More about Matter Waves Reading Quiz Questions

What does the confinement principle state? a) Confinement leads to quantization. b) It is very unlikely that a particle in a potential well can tunnel through the energy barrier. c) The smaller the volume of space a particle occupies, the faster it must move. d) A particle can only be confined in an infinitely deep potential well. e) It is impossible to confine a particle in an infinitely small region.

What does the confinement principle state? a) Confinement leads to quantization. b) It is very unlikely that a particle in a potential well can tunnel through the energy barrier. c) The smaller the volume of space a particle occupies, the faster it must move. d) A particle can only be confined in an infinitely deep potential well. e) It is impossible to confine a particle in an infinitely small region.

What is the term used to describe the least tightly bound electrons of an atom? a) core electron b) free electron c) positron d) valence electron e) Cooper electron

What is the term used to describe the least tightly bound electrons of an atom? a) core electron b) free electron c) positron d) valence electron e) Cooper electron

For an infinitely deep potential well, what does the quantum number n signify? a) the total number of electrons involved b) the number of possible location(s) of the atom(s) c) the energy level an electron is in d) the probability density e) the nutation of the atom

For an infinitely deep potential well, what does the quantum number n signify? a) the total number of electrons involved b) the number of possible location(s) of the atom(s) c) the energy level an electron is in d) the probability density e) the nutation of the atom

Consider an electron trapped in a one-dimensional trap. Which one of the following statements correctly describes the lowest energy level according to the text? a) The lowest energy such an electron can have is always negative. b) The lowest energy such an electron can have is always positive. c) The lowest energy such an electron can have is zero. d) The lowest energy such an electron can have may be positive, negative, or zero. e) The lowest energy such an electron can have cannot be calculated.

Consider an electron trapped in a one-dimensional trap. Which one of the following statements correctly describes the lowest energy level according to the text? a) The lowest energy such an electron can have is always negative. b) The lowest energy such an electron can have is always positive. c) The lowest energy such an electron can have is zero. d) The lowest energy such an electron can have may be positive, negative, or zero. e) The lowest energy such an electron can have cannot be calculated.

What is a quantum jump? a) when an electron tunnels through a potential barrier b) when a particle moves from one well to another c) when an electron changes energy levels d) when an electron changes from exhibiting wave-like properties to particle-like properties e) when a particle’s speed changes in quantized amounts

What is a quantum jump? a) when an electron tunnels through a potential barrier b) when a particle moves from one well to another c) when an electron changes energy levels d) when an electron changes from exhibiting wave-like properties to particle-like properties e) when a particle’s speed changes in quantized amounts

Photons are directed at an electron within a confined system. Which of the following correctly describes the requirement for the energy of a photon if it is to cause the electron to move from a lower state to a higher state within the system? a) The energy of the photon must be must be equal to or larger than the zero point energy. b) The energy of the photon must be must be equal to the energy of the lower state. c) The energy of the photon must be must be equal to the energy of the higher state. d) The energy of the photon must be must be smaller than the energy difference between the initial and final states. e) The energy of the photon must be must be equal to the energy difference between the initial and final states.

Photons are directed at an electron within a confined system. Which of the following correctly describes the requirement for the energy of a photon if it is to cause the electron to move from a lower state to a higher state within the system? a) The energy of the photon must be must be equal to or larger than the zero point energy. b) The energy of the photon must be must be equal to the energy of the lower state. c) The energy of the photon must be must be equal to the energy of the higher state. d) The energy of the photon must be must be smaller than the energy difference between the initial and final states. e) The energy of the photon must be must be equal to the energy difference between the initial and final states.

What is the term used for the lowest energy level of an atom? a) ionization energy b) nucleation energy c) fermi level d) ground state e) work function

What is the term used for the lowest energy level of an atom? a) ionization energy b) nucleation energy c) fermi level d) ground state e) work function

What does the correspondence principle state? a) For every action, there is a corresponding force. b) When quantum numbers become very large, classical and quantum physics merge. c) Matter waves and electromagnetic waves correspond to each other at the level of very small quantum numbers. d) A particle trapped inside an infinitely deep potential well will have quantized energy states. e) In quantum mechanics, matter and energy are indistinguishable.

What does the correspondence principle state? a) For every action, there is a corresponding force. b) When quantum numbers become very large, classical and quantum physics merge. c) Matter waves and electromagnetic waves correspond to each other at the level of very small quantum numbers. d) A particle trapped inside an infinitely deep potential well will have quantized energy states. e) In quantum mechanics, matter and energy are indistinguishable.

Consider an electron trapped in a one-dimensional, infinitely deep potential energy well. Which of the following statements concerning the value of the wavefunction of the electron at the walls of the well must be true? a) The value must be negative. b) The value must be positive. c) The value must be complex. d) The value must be zero. e) The value will vary depending on the quantum number n.

Consider an electron trapped in a one-dimensional, infinitely deep potential energy well. Which of the following statements concerning the value of the wavefunction of the electron at the walls of the well must be true? a) The value must be negative. b) The value must be positive. c) The value must be complex. d) The value must be zero. e) The value will vary depending on the quantum number n.

Which of the following statements concerning an electron at its lowest energy state within a one-dimensional, infinitely deep potential well is true? a) The electron is least likely to be near the walls of the well. b) The electron is least likely to be at the center of the well. c) The electron is least likely to be found between the center and a wall. d) The electron is equally likely to be found anywhere in the well. e) The electron is least likely to be found anywhere in the well.

Which of the following statements concerning an electron at its lowest energy state within a one-dimensional, infinitely deep potential well is true? a) The electron is least likely to be near the walls of the well. b) The electron is least likely to be at the center of the well. c) The electron is least likely to be found between the center and a wall. d) The electron is equally likely to be found anywhere in the well. e) The electron is least likely to be found anywhere in the well.

What is the zero-point energy? a) The smallest amount of energy that any particle can have in the Universe is called the zero-point energy. b) The smallest energy that an electron confined within an atom is zero joules, which is the zero point energy. c) The energy that an electron has at the walls of a potential barrier is called the zero-point energy. d) Particles in confined systems have a minimum amount of energy that is not equal to zero, which is called the zero-point energy. e) The energy that an electron has at the center of a potential well is called the zero-point energy.

What is the zero-point energy? a) The smallest amount of energy that any particle can have in the Universe is called the zero-point energy. b) The smallest energy that an electron confined within an atom is zero joules, which is the zero point energy. c) The energy that an electron has at the walls of a potential barrier is called the zero-point energy. d) Particles in confined systems have a minimum amount of energy that is not equal to zero, which is called the zero-point energy. e) The energy that an electron has at the center of a potential well is called the zero-point energy.

What is the purpose of normalizing a wave function? a) so all wave functions can be compared with each other b) so the probability density is not a complex number c) so the wave function is never negative d) so the probability of finding the particle is one hundred percent e) so the wave function is positive and never equal to zero

What is the purpose of normalizing a wave function? a) so all wave functions can be compared with each other b) so the probability density is not a complex number c) so the wave function is never negative d) so the probability of finding the particle is one hundred percent e) so the wave function is positive and never equal to zero

The square of what parameter indicates the probability of locating a particle within a region of space? a) momentum b) wave function c) wavelength d) energy e) spin

The square of what parameter indicates the probability of locating a particle within a region of space? a) momentum b) wave function c) wavelength d) energy e) spin

Which of the following statements concerning an electron in the n = 2 state within a one-dimensional, finite potential well is true? a) The electron is least likely to be near the walls of the well. b) The electron is least likely to be at the center of the well. c) The electron is least likely to be found between the center and a wall. d) The electron is equally likely to be found anywhere in the well. e) The electron is least likely to be found anywhere in the well.

Which of the following statements concerning an electron in the n = 2 state within a one-dimensional, finite potential well is true? a) The electron is least likely to be near the walls of the well. b) The electron is least likely to be at the center of the well. c) The electron is least likely to be found between the center and a wall. d) The electron is equally likely to be found anywhere in the well. e) The electron is least likely to be found anywhere in the well.

Several artificial electron traps are described in the text. Which one of the following choices is not discussed in the text? a) quantum dot b) quantum corral c) superlattice d) nanocrystallite

Several artificial electron traps are described in the text. Which one of the following choices is not discussed in the text? a) quantum dot b) quantum corral c) superlattice d) nanocrystallite

Which one of the following choice is an assumption Bohr made in formulating his atomic model? a) Electron energies are quantized. b) The linear momentum of the electron is quantized. c) The angular momentum of the electron is quantized. d) The ground state energy of the hydrogen atom is  eV. e) Electrons may be found anywhere in the atom.

Which one of the following choice is an assumption Bohr made in formulating his atomic model? a) Electron energies are quantized. b) The linear momentum of the electron is quantized. c) The angular momentum of the electron is quantized. d) The ground state energy of the hydrogen atom is  eV. e) Electrons may be found anywhere in the atom.

The Bohr model successfully predicted which one of the following parameters? a) The values of the energy levels of the hydrogen atom. b) The radius of the nucleus of the hydrogen atom. c) The size of an electron. d) The electric potential of an electron. e) The number of neutrons in a given atom.

The Bohr model successfully predicted which one of the following parameters? a) The values of the energy levels of the hydrogen atom. b) The radius of the nucleus of the hydrogen atom. c) The size of an electron. d) The electric potential of an electron. e) The number of neutrons in a given atom.

What was the contribution of Johann Balmer in the study of atomic spectra? a) He discovered new lines for the hydrogen spectrum located in the ultraviolet region. b) He found a relationship between an empirical formula for hydrogen’s atomic spectra to Bohr’s model of the atom. c) He found an empirical equation that gave the values of the observed visible wavelengths of the hydrogen spectrum. d) By studying the solar absorption spectrum, he discovered the element hydrogen. e) By studying atomic spectra, he discovered that every element has a unique spectrum.

What was the contribution of Johann Balmer in the study of atomic spectra? a) He discovered new lines for the hydrogen spectrum located in the ultraviolet region. b) He found a relationship between an empirical formula for hydrogen’s atomic spectra to Bohr’s model of the atom. c) He found an empirical equation that gave the values of the observed visible wavelengths of the hydrogen spectrum. d) By studying the solar absorption spectrum, he discovered the element hydrogen. e) By studying atomic spectra, he discovered that every element has a unique spectrum.

Which one of the following statements is not part of the Bohr model of the atom? a) Electrons emit electromagnetic radiation as they orbit in stationary states. b) The structure of the atom is that there is a very small, positively charged nucleus surrounded by electrons. c) The radii for Bohr orbits depends on the number of protons in the nucleus. d) Electrons move in circular orbits. e) A photon is emitted when an electron drops from a higher energy orbit to a lower energy orbit.

Which one of the following statements is not part of the Bohr model of the atom? a) Electrons emit electromagnetic radiation as they orbit in stationary states. b) The structure of the atom is that there is a very small, positively charged nucleus surrounded by electrons. c) The radii for Bohr orbits depends on the number of protons in the nucleus. d) Electrons move in circular orbits. e) A photon is emitted when an electron drops from a higher energy orbit to a lower energy orbit.

How many quantum numbers did Bohr use in his model to identify the various electron orbits? a) 0 b) 1 c) 2 d) 3 e) 4

How many quantum numbers did Bohr use in his model to identify the various electron orbits? a) 0 b) 1 c) 2 d) 3 e) 4

What causes the potential well of a hydrogen atom? a) the zero-point energy of the atom b) the quantization of the electron’s angular momentum c) the electrostatic attraction of the electron and proton d) the confinement of the electron to the atomic orbitals e) the magnetic interaction between the spin angular momentum of the proton and the electron

What causes the potential well of a hydrogen atom? a) the zero-point energy of the atom b) the quantization of the electron’s angular momentum c) the electrostatic attraction of the electron and proton d) the confinement of the electron to the atomic orbitals e) the magnetic interaction between the spin angular momentum of the proton and the electron

Which one of the following choices is not a quantum number? a) orbital magnetic quantum number b) principal quantum number c) shell quantum number d) orbital quantum number

Which one of the following choices is not a quantum number? a) orbital magnetic quantum number b) principal quantum number c) shell quantum number d) orbital quantum number

Which one of the following quantum numbers determines the total energy of an atom? a) spin quantum number b) magnetic quantum number c) orbital quantum number d) principal quantum number

Which one of the following quantum numbers determines the total energy of an atom? a) spin quantum number b) magnetic quantum number c) orbital quantum number d) principal quantum number

Which series of lines in the hydrogen line spectrum involves electrons making a transition from higher energy levels down to the lowest energy level? a) Balmer series b) Lyman series c) Paschen series d) Brackett series e) Pfund series

Which series of lines in the hydrogen line spectrum involves electrons making a transition from higher energy levels down to the lowest energy level? a) Balmer series b) Lyman series c) Paschen series d) Brackett series e) Pfund series