Changing Reference Frame Frank Gielsdorf technet GmbH Berlin.

Slides:



Advertisements
Similar presentations
Geodetic Surveying B SVY3107 Coordinate Transformations.
Advertisements

MGA Concepts and Grid Calculations
Coordinate Systems, Datums and Map Projections D’Arcangelis 11/9/09
CS 128/ES Lecture 3a1 Map projections. CS 128/ES Lecture 3a2 The dilemma Maps are flat, but the Earth is not! Producing a perfect map is like.
Topic 2 – Spatial Representation
Universal Data Collection (UDC) Mapping Project
CS 128/ES Lecture 2b1 Coordinate systems & projections.
Coordinate Systems, Datums and Map Projections
Map Projections (1/2) Francisco Olivera, Ph.D., P.E. Center for Research in Water Resources University of Texas at Austin.
GEODETIC CONTROL SURVEYS
The PAI Approach of the Surveying Administration Brandenburg Frank GielsdorfTU Berlin Eckhardt SeyfertSurveying Administration Brandenburg.
Geographic Datums Y X Z The National Imagery and Mapping Agency (NIMA) and the Defense Mapping School Reviewed by:____________ Date:_________ Objective:
Map Projections Francisco Olivera, Ph.D., P.E. Srikanth Koka
Permanent GPS Stations in Israel as Basis for
Projections and Coordinate Systems, Continued
Map projections CS 128/ES Lecture 3a.
Conversion from Latitude/Longitude to Cartesian Coordinates
Geographic Information Systems in Water Science Unit 4: Module 1, Lecture 2 – Coordinate Systems and Common GIS data formats.
Introduction.
Datums and Coordinates How the Evolution of GPS is Transforming Survey and Mapping GITA/ACSM April 25, 2010 Pam Fromhertz Colorado State Geodetic Advisor,
Geodesy, Map Projections and Coordinate Systems
Geodesy, Map Projections and Coordinate Systems
Lecture 4 Understanding Coordinate Systems. Geographic Coordinate systems GCS Spherical Ellipsoidal Curved.
Geo-Referencing of Scans Oliver Bürkler Technical Product Manager May 2010.
Permanent GPS Stations and their Influence on the Geodetic Surveys in Israel Gershon Steinberg Survey of Israel 1 Lincoln St. Tel-Aviv 65220, Israel Gilad.
Coordinate Systems in Geodesy By K.V.Ramana Murty, O. S.
The graticule is made up of vertical lines, called lines of longitude, and horizontal lines, called lines of latitude. Because the earth is spherical,
Mapping Projections of Kentucky Bryan W
Geography 370 Locating Positions on the Earth
shops/gis/docs/projections.ppt.
Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a.
Geocentric Datum of Australia Geocentric Datum of Australia (GDA) Peter Todd Project Manager GDA Implementation ICSM Matt Higgins Technical Manager GDA.
Map Projections Francisco Olivera, Ph.D., P.E. Srikanth Koka Department of Civil Engineering Texas A&M University.
Coordinate Systems and Projections. Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map.
Geodesy and Datums Ellipsoid and Geoid Geographic Coordinate system.
HEPOS A look at the Transformation Between the ETRF and the Greek Reference Geodetic System INF Vaios Balis – Christos Liapakis Geotech Ltd.
PRS92 Bonifacia Daet Sylvia Esperanza
APPLICATION OF GPS TECHNOLOGY TO ARCHAEOLOGY GROUP PROJECT.
PROJECT GEODESY.
GIS in Water Resources Review for Midterm Exam. Latitude and Longitude in North America 90 W 120 W 60 W 30 N 0 N 60 N Austin: (30°N, 98°W) Logan: (42°N,
Geography 70  Basic Geodesy  Map Projections  Coordinate Systems  Scale Locating Positions on the Earth.
Design of the Wisconsin County Coordinate System: Some Current Issues Al Vonderohe SIAC Presentation - October 27, 2004.
Revolution in Earth Measurement Traditional Surveying uses benchmarks as reference points Global Positioning uses fixed GPS receivers as reference points.
CE 453 – Horizontal / vertical reference systems and mapping.
Map Projections.
ST236 Site Calibrations with Trimble GNSS
Date: 13/03/2015 Training Reference: 2015 GIS_01 Document Reference: 2015GIS_01/PPT/L2 Issue: 2015/L2/1/V1 Addis Ababa, Ethiopia GIS Coordinate Systems.
6th EC-GIS, Jun 2000, Lyon, France A Spatial Reference System for Europe 1 A Spatial Reference System (by co-ordinates) for Europe
GPS Site Calibration Objectives  Explain the Co-ordinate systems used in GPS Surveying.  Explain what a calibration is.  Explain the 5 main process.
Nic Donnelly – Geodetic Data Analyst 5 March 2008 Vertical Datum Issues in New Zealand.
Geodetic Control and Datums Where is it? How Accurately can we map it?
Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland 1 Radical change to a modern general control network XXIII FIG-Congress.
National Geospatial Reference Frameworks to Geocode Official Statistics Andreas Busch Working Party Meeting Geographical Information for Statistics
Review of Projections and Coordinate Systems
What is Geodesy ?. Satellite Observations of the Earth European Remote Sensing satellite, ERS-1 from 780Km ERS-1 depicts the earth’s shape without water.
The Global Positioning System Rebecca C. Smyth April 17 - May 2, 2001.
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
Lab 2 – Topographic Maps & Land Navigation. Maps/Coordinate Systems ► Represent spatial relationship of things and shape of landscape ► Must have frame.
Chapter 11 Coordinate Systems. Outline About coordinate systems Geographic coordinate systems Projected coordinate systems Raster coordinate systems Common.
Coordinate Systems and Map Projections
Georeferencing Ming-Chun Lee.
Local Cartesian Coordinate Systems
COORDINATE SYSTEMS AND MAP PROJECTIONS
Lecture 07: Coordinate Transformation I
Ellipsoid and Geoid Geographic Coordinate system
2- مبنای مسطحاتی Datum What is Datum? Spheroid Ellipsoid Geoid.
Maps Base maps Coordinate Systems, Datums, Projections
Datums and Coordinate Systems
Lecture 4 Geographic Coordinate System
Presentation transcript:

Changing Reference Frame Frank Gielsdorf technet GmbH Berlin

Definition of Reference Frames Horizontal Control Network Vertical Control Network Datum/ Gauge Rauenberg Potsdam ETRS89 Amsterdam Kronstadt Genua Reference Surface Bessel Ellipsoid Krassovski Ellipsoid GRS80 Ellipsoid Geoid Quasigeoid Projection Gauss-Krueger Soldner UTM

Situation in 1990 West GermanyEast Germany Horizontal Control Network Potsdam Datum Bessel Ellipsoid Gauss-Krueger (different resurveys) Pulkovo Datum Krassovski Ellipsoid Gauss-Krueger Vertical Control Network Amsterdam Gauge Geoid Kronstadt Gauge Quasigeiod

Were is the Problem? Example: German Railways Positioning System for Trains Required Positional Accuracy: 50cm Necessary: Data base of the rail geometry with a unique spatial reference frame! Train with GPS Antenna Surveying and Navigation with GPS!

Reference Frames Old: German Main Triangle Network (DHDN) datum point:TP Rauenberg reference ellipsoid:Bessel ( a = m, f = 1: ) New: European Terrestrial Reference System 1989 (ETRS89) datum points:23 laser- und VLBI positions in Europe reference ellipsoid:Geodetic Reference System 1980 (GRS80) ( a = m, f = 1: )

Projection m = cosh(y/R)m = cosh(y/R)*0,9996 Gauss-Krueger UTM (Universal Transversal Mercator)

3D Datum Transformation (X, Y, h) DHDN / Gauss-Krueger (X, Y, Z) DHDN / geocentric (X, Y, Z) ETRS89 / geocentric (X, Y, h) ETRS89 / UTM Conversion Datum Transformation (adjustment problem) Prerequisite: identical points

Adjustment Approach Functional Model

Transformation Parameter NRW Teilnetztx [m]ty [m]tz [m] dm [ppm] ex [‘‘]ey [‘‘]ez [‘‘]σp [cm] BRD ± 113 NRW ± 34 I ± 13 II ± 42 III ±37 IV ±10 V ± 5 VI ± 10 VII ± 8 VIII ± 7 Quelle: Landesvermessungsamt NRW

2D Datum Transformation The analytical function of an complex number impart a conformal mapping. Special case: Helmert-Transformation

Example North Rhine-Westphalia two meridional zones 155 TP 1. order degree 3 resp. 4 n =310 u =18 r =300 σ p =0,097 m V max =0,201 m

Problem: Remaining Discrepancies Remaining Discrepancies : –Residuals of coordinate observations Causes: –Random deviations  adjustment calculation –Systematic influences  model extension Solution: –Extension of the mapping rule

Extension of the Mapping Rule 1.Step Transformation 2. Step Neighborhood Fitting Identical Points DHDN Identical Points ETRS89 Calculation of Transformation Parameters Transformation of New Points New Points DHDN Artificial Observations, Geometrical Constraints Adjustment Transformation Parameters + Residuals All Points in ETRS89 + Residuals All Points in ETRS89

Subproject from Hamburg Points:6973 Reference Points:36 Point Identities:38 Triangle Sides:20883