Introduction to Regression with Measurement Error STA431: Spring 2013.

Slides:



Advertisements
Similar presentations
STA305 Spring 2014 This started with excerpts from STA2101f13
Advertisements

The Simple Regression Model
Lecture (11,12) Parameter Estimation of PDF and Fitting a Distribution Function.
Introduction to Regression with Measurement Error STA431: Spring 2015.
Exploratory Factor Analysis
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 12 l Multiple Regression: Predicting One Factor from Several Others.
Week11 Parameter, Statistic and Random Samples A parameter is a number that describes the population. It is a fixed number, but in practice we do not know.
Review of the Basic Logic of NHST Significance tests are used to accept or reject the null hypothesis. This is done by studying the sampling distribution.
Regression Part II One-factor ANOVA Another dummy variable coding scheme Contrasts Multiple comparisons Interactions.
Logistic Regression STA302 F 2014 See last slide for copyright information 1.
The Multiple Regression Model Prepared by Vera Tabakova, East Carolina University.
The Simple Linear Regression Model: Specification and Estimation
Chapter 10 Simple Regression.
Sampling Distributions
Econ Prof. Buckles1 Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u 1. Estimation.
Class 5: Thurs., Sep. 23 Example of using regression to make predictions and understand the likely errors in the predictions: salaries of teachers and.
Simulation Modeling and Analysis Session 12 Comparing Alternative System Designs.
The Simple Regression Model
One-way Between Groups Analysis of Variance
Data Analysis Statistics. Inferential statistics.
1 BA 555 Practical Business Analysis Review of Statistics Confidence Interval Estimation Hypothesis Testing Linear Regression Analysis Introduction Case.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
Review for Final Exam Some important themes from Chapters 9-11 Final exam covers these chapters, but implicitly tests the entire course, because we use.
Copyright © 2012 Pearson Education. All rights reserved Copyright © 2012 Pearson Education. All rights reserved. Chapter 10 Sampling Distributions.
Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University ECON 4550 Econometrics Memorial University of Newfoundland.
Normal Linear Model STA211/442 Fall Suggested Reading Faraway’s Linear Models with R, just start reading. Davison’s Statistical Models, Chapter.
Double Measurement Regression STA431: Spring 2013.
Understanding Multivariate Research Berry & Sanders.
Maximum Likelihood See Davison Ch. 4 for background and a more thorough discussion. Sometimes.
Introduction to Regression with Measurement Error STA302: Fall/Winter 2013.
Ms. Khatijahhusna Abd Rani School of Electrical System Engineering Sem II 2014/2015.
Montecarlo Simulation LAB NOV ECON Montecarlo Simulations Monte Carlo simulation is a method of analysis based on artificially recreating.
Factorial ANOVA More than one categorical explanatory variable STA305 Spring 2014.
Logistic Regression STA2101/442 F 2014 See last slide for copyright information.
Random Regressors and Moment Based Estimation Prepared by Vera Tabakova, East Carolina University.
1 Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u.
Regression Part II One-factor ANOVA Another dummy variable coding scheme Contrasts Multiple comparisons Interactions.
Week11 Parameter, Statistic and Random Samples A parameter is a number that describes the population. It is a fixed number, but in practice we do not know.
Chapter 5 Parameter estimation. What is sample inference? Distinguish between managerial & financial accounting. Understand how managers can use accounting.
Chapter 20 Testing Hypothesis about proportions
Scatterplots & Regression Week 3 Lecture MG461 Dr. Meredith Rolfe.
Academic Research Academic Research Dr Kishor Bhanushali M
Multiple Regression. Simple Regression in detail Y i = β o + β 1 x i + ε i Where Y => Dependent variable X => Independent variable β o => Model parameter.
The Simple Linear Regression Model: Specification and Estimation ECON 4550 Econometrics Memorial University of Newfoundland Adapted from Vera Tabakova’s.
Chapter 4 The Classical Model Copyright © 2011 Pearson Addison-Wesley. All rights reserved. Slides by Niels-Hugo Blunch Washington and Lee University.
Confirmatory Factor Analysis Part Two STA431: Spring 2013.
Categorical Independent Variables STA302 Fall 2013.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 4 Designing Studies 4.2Experiments.
STA302: Regression Analysis. Statistics Objective: To draw reasonable conclusions from noisy numerical data Entry point: Study relationships between variables.
Chapter 8: Simple Linear Regression Yang Zhenlin.
Review of Probability. Important Topics 1 Random Variables and Probability Distributions 2 Expected Values, Mean, and Variance 3 Two Random Variables.
Review of Statistics.  Estimation of the Population Mean  Hypothesis Testing  Confidence Intervals  Comparing Means from Different Populations  Scatterplots.
Categorical Independent Variables STA302 Fall 2015.
Sampling Distributions Statistics Introduction Let’s assume that the IQ in the population has a mean (  ) of 100 and a standard deviation (  )
Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 4-1 Basic Mathematical tools Today, we will review some basic mathematical tools. Then we.
STA302: Regression Analysis. Statistics Objective: To draw reasonable conclusions from noisy numerical data Entry point: Study relationships between variables.
Rerandomization to Improve Covariate Balance in Randomized Experiments Kari Lock Harvard Statistics Advisor: Don Rubin 4/28/11.
The Sample Variation Method A way to select sample size This slide show is a free open source document. See the last slide for copyright information.
Logistic Regression For a binary response variable: 1=Yes, 0=No This slide show is a free open source document. See the last slide for copyright information.
Sums of Random Variables and Long-Term Averages Sums of R.V. ‘s S n = X 1 + X X n of course.
Simple Linear Regression and Correlation (Continue..,) Reference: Chapter 17 of Statistics for Management and Economics, 7 th Edition, Gerald Keller. 1.
Inference about the slope parameter and correlation
The simple linear regression model and parameter estimation
Interactions and Factorial ANOVA
Logistic Regression Part One
Simple Linear Regression - Introduction
Review of Hypothesis Testing
Exploratory Factor Analysis. Factor Analysis: The Measurement Model D1D1 D8D8 D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 F1F1 F2F2.
Introduction to Regression
Presentation transcript:

Introduction to Regression with Measurement Error STA431: Spring 2013

Linear Regression

Matrix Form Are X values really constants?

Double Expectation E{Y} is a constant. E{Y|X} is a random variable, a function of X.

Beta-hat is (conditionally) unbiased Unbiased unconditionally, too

Perhaps Clearer

Conditional size α test, Critical region A

Measurement Error Snack food consumption Exercise Income Cause of death Even amount of drug that reaches animal’s blood stream in an experimental study Is there anything that is not measured with error?

For categorical variables Classification error is common

Simple additive model for measurement error: Continuous case How much of the variation in the observed variable comes from variation in the quantity of interest, and how much comes from random noise?

Reliability is the squared correlation between the observed variable and the latent variable (true score). First, recall

Reliability

Reliability is the proportion of the variance in the observed variable that comes from the latent variable of interest, and not from random error.

Correlate usual measurement with “Gold Standard?” Not very realistic, except maybe for some bio-markers

Test-Retest Equivalent measurements

Test-Retest Reliability

Estimate the reliability: Measure twice for a sample of size n Calculate the sample correlation between W 1,1, W 2,1, …, W n,1 W 1,2, W 2,2, …, W n,2 Test-retest reliability Alternate forms reliability Split-half reliability

The consequences of ignoring measurement error in the explanatory (x) variables

Measurement error in the response variable is a less serious problem: Re-parameterize Can’t know everything, but all we care about is β 1 anyway.

Measurement error in the explanatory variables True model Naïve model

True Model (More detail)

Reliabilities Reliability of W 1 is Reliability of W 2 is

Test X 2 controlling for (holding constant) X 1 That's the usual conditional model

Unconditional: Test X 2 controlling for X 1 Hold X 1 constant at fixed x 1

Controlling Type I Error Rate Type I error is to reject H 0 when it is true, and there is actually no effect or no relationship Type I error is very bad. That’s why Fisher called it an “error of the first kind.” False knowledge is worse than ignorance.

Simulation study: Use pseudo- random number generation to create data sets Simulate data from the true model with β 2 =0 Fit naïve model Test H 0 : β 2 =0 at α = 0.05 using naïve model Is H 0 rejected five percent of the time?

Try it with measurement error 9 out of 10

A Big Simulation Study (6 Factors) Sample size: n = 50, 100, 250, 500, 1000 Corr(X 1,X 2 ): ϕ 12 = 0.00, 0.25, 0.75, 0.80, 0.90 Variance in Y explained by X 1 : 0.25, 0.50, 0.75 Reliability of W 1 : 0.50, 0.75, 0.80, 0.90, 0.95 Reliability of W 2 : 0.50, 0.75, 0.80, 0.90, 0.95 Distribution of latent variables and error terms: Normal, Uniform, t, Pareto 5x5x3x5x5x4 = 7,500 treatment combinations

Within each of the 5x5x3x5x5x4 = 7,500 treatment combinations 10,000 random data sets were generated For a total of 75 million data sets All generated according to the true model, with β 2 =0 Fit naïve model, test H 0 : β 2 =0 at α = 0.05 Proportion of times H 0 is rejected is a Monte Carlo estimate of the Type I Error Rate

Look at a small part of the results Both reliabilities = 0.90 Everything is normally distributed β 0 = 1, β 1 =1, β 2 =0 (H 0 is true)

Marginal Mean Type I Error Rates

Summary Ignoring measurement error in the independent variables can seriously inflate Type I error rates. The poison combination is measurement error in the variable for which you are “controlling,” and correlation between latent independent variables. If either is zero, there is no problem. Factors affecting severity of the problem are (next slide)

Factors affecting severity of the problem As the correlation between X 1 and X 2 increases, the problem gets worse. As the correlation between X 1 and Y increases, the problem gets worse. As the amount of measurement error in X 1 increases, the problem gets worse. As the amount of measurement error in X 2 increases, the problem gets less severe. As the sample size increases, the problem gets worse. Distribution of the variables does not matter much.

As the sample size increases, the problem gets worse. For a large enough sample size, no amount of measurement error in the independent variables is safe, assuming that the latent independent variables are correlated.

The problem applies to other kinds of regression, and various kinds of measurement error Logistic regression Proportional hazards regression in survival analysis Log-linear models: Test of conditional independence in the presence of classification error Median splits Even converting X 1 to ranks inflates Type I Error rate

If X 1 is randomly assigned Then it is independent of X 2 : Zero correlation. So even if an experimentally manipulated variable is measured (implemented) with error, there will be no inflation of Type I error rate. If X 2 is randomly assigned and X 1 is a covariate observed with error (very common), then again there is no correlation between X 1 and X 2, and so no inflation of Type I error rate. Measurement error may decrease the precision of experimental studies, but in terms of Type I error it creates no problems. This is good news!

What is going on theoretically? First, need to look at some large- sample tools

Observing whether a single individual is male or female: Pair of individuals and observed their genders in order: Select n people and count the number of females: For limits problems, the points in Ω are infinite sequences Sample Space Ω, ω an element of Ω

Random variables are functions from Ω into the set of real numbers

Random sample To see what happens for large samples

Modes of Convergence Almost Sure Convergence Convergence in Probability Convergence in Distribution

Almost Sure Convergence Acts like an ordinary limit, except possibly on a set of probability zero. All the usual rules apply.

Strong Law of Large Numbers The only condition required for this to hold is the existence of the expected value.

Let X 1, …, X n be independent and identically distributed random variables; let X be a general random variable from this same distribution, and Y=g(X)

So for example That is, sample moments converge almost surely to population moments.

Convergence in Probability Almost Sure Convergence => Convergence in Probability Strong Law of Large Numbers => Weak Law of Large Numbers

Convergence in Distribution Central Limit Theorem says

Connections among the Modes of Convergence

Consistency T n = T n (X 1, …, X n ) is a statistic estimating a parameter θ Strong consistency implies ordinary consistency.

Consistency is great but it's not enough It means that as the sample size becomes indefinitely large, you (probably) get as close as you like to the truth. It's the least we can ask. Estimators that are not consistent are completely unacceptable for most purposes.

Consistency of the Sample Variance

Consistency of the Sample Covariance

Single Independent Variable True model Naive model

Least squares estimate of β 1 for the Naïve Model

Goes to the true parameter times reliability of W. Asymptotically biased toward zero, because reliability is between zero and one. No asymptotic bias when β 1 =0. No inflation of Type I error rate Loss of power when β 1 ≠ 0 Measurement error just makes relationship seem weaker than it is. Reassuring, but watch out!

Two Independent variables, β 2 =0

Least squares estimate of β 2 for the Naïve Model when true β 2 = 0 Combined with estimated standard error going almost surely to zero, Get t statistic for H 0 : β 2 = 0 going to ±∞, and p-value going almost Surely to zero, unless....

Combined with estimated standard error going almost surely to zero, get t statistic for H 0 : β 2 = 0 going to ±∞, and p-value going almost surely to zero, unless.... There is no measurement error in W 1, or There is no relationship between X 1 and Y, or There is no correlation between X 1 and X 2. And, anything that increases Var(W 2 ) will decrease the bias.

Need a statistical model that includes measurement error

Copyright Information This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These Powerpoint slides are available from the course website: