Basics of Celestial Navigation - stars

Slides:



Advertisements
Similar presentations
Comet Machholz passes the Pleiades. Comet Machholz C/2004 Q2 Discovered byDonald Machholz, Jr. on August 27, 2004 Period of about 120,000 years Just up.
Advertisements

Chapter S1 Celestial Timekeeping and Navigation
PHYS 1025 – Introductory Astronomy Lecture 2, Either Semester
Apparent/Actual Motions Summary
Life on the Tilted Teacup Ride
Prologue Welcome to PH109 Exploring the Universe Dr. Michael L. Cobb Fall, 2003.
The Earth Rotates.
Locating Positions on Earth
PHY134 Introductory Astronomy
Learn to use a star chart like one at end of text Know where north is. Use compass or GPS. Match star chart to the night sky Find the brightest stars.
The Celestial Sphere The 88 official constellations cover the celestial sphere. If you do not have a model of the celestial sphere to bring to class, you.
Motion in the Sky. Discussion How do we estimate how far away things are from us in everyday life?
Grab your text book Chapter 1 Astronomy Today 7th Edition
Patterns in the Sky (cont)
ASTR211 EXPLORING THE SKY Coordinates and time Prof. John Hearnshaw.
Orientation of the Night Sky
Discovering The Universe for Yourself
Constellations A constellation is a region of the sky.
Introduction to Astronomy.  Observations lead to theories and laws  Laws are concise statements that summaries a large number of observations.  Theories.
The Celestial Sphere Lab 2. Celestial sphere Geocentric model zenith - the point on the celestial sphere that is directly over our heads always 90˚ from.
Daytime Observing: Sun, Noon, South. Sun Measurement - 01 We measured at 10:35 am on Aug 27, 2014 Length of the shadow of a meter stick was 1.25m Trigonometry:
Discovering the Universe for Yourself
Groups of dark brown streaks have been photographed by the Mars Reconnaissance Orbiter on melting pinkish sand dunes covered with light frost. Dark sand.
This is what it’s all about…. The Celestial Sphere Useful concept for: 1.Finding your way around the sky (astronomical coordinate system) 2.Thinking about.
Observational Astrophysics in the visible light Shai Kaspi Technion - March 2015.
Latitude and longitude
NATS From the Cosmos to Earth A model of the celestial sphere shows the patterns of the stars, the borders of the 88 official constellations, the.
Terrestrial Coordinates (useful for specifying locations on the surface of the Earth) Longitude - Longitude -- East/West Coordinate -- 0  at the Prime.
Alta High Astronomy Intro: Astronomy A stellar course to be in!
 There are 2 types: i. Az/Alt. -The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental.
Last time: 2.1. Patterns in The Sky: Stars and constellations, TODAY: celestial coordinates 2.2 Seasons,…Precession 2.2 (cont.) The Moon and Eclipses.
Where is it? On the Celestial Sphere. Longitude and Latitude On Earth: Longitude is how far you are, in degrees, East or West of the “Prime Meridian”
Celestial Sphere. Earthly Sphere Latitude measures the number of degrees north or south of the equator. –DeKalb at 41° 55’ N Longitude measures degrees.
Bellwork 9/2 Describe what you learned in your lab yesterday in 15 words or less.
A scientific model.  Why do we use the model of the celestial sphere when studying the night sky, even though it does not accurately represent three-dimensional.
First announcement: full moon tonight at 12:18 AM.
Mastering Astronomy.
1 Lines in the Sky In order to use the sky to measure time you need to measure the location of objects in the sky. We will look at two methods of measuring.
Celestial Sphere Facts: It’s an imaginary sphere with earth in the center. It is useful for locating constellations and stars on a star map.
1. Where are we ? -In the Universe In the Solar System 3 rd planet from the Sun.
EARTH IN SPACE. A reminder about earth  The earth is almost a sphere  We locate points on the sphere with 3 coordinates – Longitude (180º W º.
Celestial Navigation Celestial Motion 1. General Organization Original “celestial sphere” model devised by the Greeks is still used –Greeks saw the Earth.
Chapter 1 Charting the Heavens: The Foundations of Astronomy.
1.Stars move from east to west over the course of the night 2.Change slightly from one night to the next 3.However, their relative positions remain.
The sky Our place in space ConstellationsMeasurement Celestial Sphere Polaris and precession $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
1 The Sun and the Celestial Sphere As the Earth orbits the Sun we seen the Sun in different locations against the backdrop of stars. The Earth reaches.
Constellations come, and climb the heavens, and go, And thou dost see them rise, Star of the Pole! and thou dost see them set, Alone,
Chapter 2 Celestial Motions. Fig. 2.1 The Celestial Sphere To understand the idea of the celestial sphere first think of the earth in space. The stars.
AstroLab-2 Locating Stars in the Sky Merav Opher-Fall 2004.
Local and Sky Coordinates
CONSTELLATIONS Constellation: formation of stars perceived as a figure or design. –88 recognized groups named after characters from classical mythology.
ASTRONOMICAL OBSERVATIONS Astronomical Observations.
MOTIONS OF SKY. Goals To identify the different parts of the celestial sphere model To understand how to express the location of objects in the sky To.
Our Location on the Earth North South EastWest North South East you are here West.
Chapter 4: Rising & Setting Stars © BRIEF
Observational Astronomy Mapping the Heavens Coordinate Systems We have two different ways to locate objects in the sky: Celestial equatorial system -Right.
Astronomy Unit 1 The celestial sphere and the seasons.
Constellations Astronomy: A pattern of stars Astrology
Locating Positions on Earth
Celestial Sphere Remember that we are on the INSIDE of the
Finding Your Way Around the Night Sky
Stargazing Terminology
Local and Sky Coordinates
Celestial Motions Chapter 2.
12/29/2018 The Sky.
On the Celestial Sphere
Celestial Motions Chapter 2.
On the Celestial Sphere
Celestial Sphere Practice Quiz
Reading the Celestial sphere
Presentation transcript:

Basics of Celestial Navigation - stars Coordinate systems Observer based – azimuth and altitude Earth based – latitude and longitude Celestial – declination and right ascension (or sidereal hour angle) Relationship among three – star pillars Motions of the stars in the sky Major star groupings

Comments on coordinate systems All three are basically ways of describing locations on a sphere – inherently two dimensional Requires two parameters (e.g. latitude and longitude) Reality – three dimensionality Height of observer Oblateness of earth, mountains Stars at different distances (parallax) What you see in the sky depends on Date of year Time Latitude Longitude Which is how we can use the stars to navigate!!

Altitude-Azimuth coordinate system Based on what an observer sees in the sky. Zenith = point directly above the observer (90o) Nadir = point directly below the observer (-90o) – can’t be seen Horizon = plane (0o) Altitude = angle above the horizon to an object (star, sun, etc) (range = 0o to 90o) Azimuth = angle from true north (clockwise) to the perpendicular arc from star to horizon (range = 0o to 360o) Note: lines of azimuth converge at zenith

The arc in the sky from azimuth of 0o to 180o is called the local meridian

Point of view of the observer

Latitude Latitude – angle from the equator (0o) north (positive) or south (negative) to a point on the earth – (range = 90o = north pole to – 90o = south pole). 1 minute of latitude is always = 1 nautical mile (1.151 statute miles) Note: It’s more common to express Latitude as 26oS or 42oN

Longitude Longitude = angle from the prime meridian (=0o) parallel to the equator to a point on earth (range = -180o to 0 to +180o) East of PM = positive, West of PM is negative. Distance between lines of longitude depend on latitude!! Note: sometimes positive longitude is expressed as West, but this is inconsistent with math conventions. Avoid confusion: 40oW or 40o E

Comments on longitude Location of prime meridian is arbitrary = Greenwich observatory in UK 1 minute of longitude = 1 nautical mile * cosine(latitude) Lines of longitude converge at the north and south poles To find longitude typically requires a clock, although there is a technique, called the lunar method that relies on the fact that the moon moves ½ of a degree per hour.

Celestial coordinates - some definitions North celestial pole = point in sky directly above north pole on earth (i.e. zenith of north pole) South celestial pole = zenith of south pole on earth Celestial equator – circle surrounding equator on earth Ecliptic – path followed by the sun through the sky over the course of the year against a “fixed” background of stars

Declination – angle from celestial equator (=0o), positive going north (north celestial pole = + 90o), negative going south (south celestial pole = - 90o) Right ascension (RA) – angle from celestial “prime meridian” – equivalent of celestial longitude RA – typically expressed as a time going east – 0 to 24 hours is 360o “Prime meridian” – point where sun is located at the vernal equinox (spring) (called vernal equinoctial colure)

Declination and “star pillars” Declination “maps” onto latitude – At some point a star of a given declination will pass over the zenith at a point on the earth at its corresponding latitude. This happens once every 24 hours

Alternative to Right Ascension Sidereal Hour Angle (SHA) - same as RA, except measured in degrees, going from 0 to 360o – conversion is straightforward Note: RA is/was useful for navigation with clocks

As with longitude, the actual angular width between lines of SHA shrinks with higher declination as Cosine(declination)

John Huth’s alternative to SHA, RA Use same convention as for terrestrial longitude, with positive and negative angles. Prime meridian corresponds to 0o for SHA Same as SHA for 0o to 180o and (360o – SHA) for values of SHA from 180o to 360o Why? Easy to remember, and allows you to associate star coordinates with points on earth. Makes it easier to visualize and memorize. Also – declination and latitude go together.

Aldeberan (Taurus) = 69oE Rigel (Orion) = 78oE Example Aldeberan (Taurus) = 69oE Rigel (Orion) = 78oE Betelgeuse (Orion) = 89oE 69oE 78oE 89oE Aldeberan Betelgeuse Rigel Sirius Procyon Orion New Delhi Calcutta Dwarka Method – lie “on your back” look at the stars and visualize the locations on the globe (otherwise, it’s a mirror image)

Aldeberan (Taurus) = 69oE - Dwarka Rigel (Orion) = 78oE – New Delhi Example Aldeberan (Taurus) = 69oE - Dwarka Rigel (Orion) = 78oE – New Delhi Betelgeuse (Orion) = 89oE - Calcutta 89oE 78oE 69oE New Delhi Aldeberan Betelgeuse Calcutta Dwarka Orion Rigel

Can associate star coordinates with latitude and Longitude of locations on earth Note: don’t expect alignment with any star – this is just a way to memorize coordinates

Important Point Mariners had to/have to rely on tables for star coordinates You can memorize major navigational star coordinates and eliminate tables Helps identify stars, too On a desert island, with only a watch, can identify latitude and longitude – along with your memory! Tell that to the creators of “Lost”!!

Mapping of three coordinate systems onto each other

How stars move through the sky Stars move in arcs that parallel the celestial equator – angle perpendicular to celestial equator is the declination Star move across the sky at 15o per hour (4 minutes per degree) Each day star positions move 1o west Stars on the celestial equator rise and set with angles of (90o – Latitude) Some stars are “circumpolar” – never set

Star paths in the sky form arcs in the sky At the equator, stars rise and set at right angles to the Horizon.

At Boston (41oN), stars due east will rise and set at an angle (90o –Latitude) = 49o with respect to the horizon (i.e. on celestial equator) Stars always move in arcs parallel to the celestial equator

Paths of stars as seen from the N. Arctic Circle 66o N – few stars rise and set – most make complete circles

Rising/setting angle is (90o – Latitude) due east/west – along celestial equator Angles are smaller the further N/S one goes θ

Relation between Azimuth, Latitude and Declination of rising and setting stars Where Rz = rising azimuth d = declination L = Latitude So – at equator, L=0, cos(L) = 1, rising azimuth is the declination of the star – exploited by Polynesians in star compasses (near the equator cos(L) close to 1 Can use this to find latitude, if you’re willing to do the math, and find the azimuth of a rising star, knowing the star’s declination.

Notes on azimuth – when Then star is either circumpolar or below the horizon Example – at latitude 45oN, cos(L)=0.707, the star Capella (declination = 46o) just becomes circumpolar Then cos(Rz) is just slightly greater than 1. Largest rising/setting angles for Rz = 90/270 degrees (along celestial equator)

Circumpolar stars – never set

Knowing a star’s declination, can get latitude from horizon grazing stars. Latitude = (polar distance – minimum height) Polar distance = (90o – Declination) Min. star height Horizon (est)

Some star groupings If you can locate stars and know the declination you can find your latitude. With a watch, and SHA (or “stellar longitude”), you can find your longitude (must know date). Clustering into constellations and their stories help locate stars by name.

“Arc to Arcturus, spike to Spica” After sunset: Spring/summer Big dipper Arcturus (Decl = 19oN) and Spica (Decl = 11oS) “alone” in this part of the sky (“longitude” = 146oW and 159oW respectively) Arcturus Spica

Summer triangle and Antares Deneb Vega Altair Antares is only visible for a short period (hours) in mid summer. Declination = 26oS Good candidate for a horizon grazing star in the summer Antares Scorpio

Summer triangle, northern cross (Cygnus) Deneb Vega Summer Triangle Cygnus/ Northern Cross Altair Vega (Decl = 39oN) and Deneb (Decl = 45o) straddle zenith in Boston (Latitude = 42o), Altair is 9o N

Finding Polaris from the big dipper Schedar Schedar (Decl = 56o) and Dubhe (Decl = 62o) are circumpolar for Boston Cassiopeia Polaris Also can be used as the basis for a “clock” (project) Dubhe Big dipper/Ursa major

Constellation story about Orion Pleiades Aldeberan Betelgeuse Rigel Sirius Procyon Orion Mintaka – right star in belt is on the equator Winter constellations – Zeus’ daughters, Pleiades (24N, 57E) are guarded by Taurus (Aldeberan = orange eye – 17N, 69E), from Orion, the hunter (Betelgeuse = 7N, 89E, Rigel 8S,78E), followed by hunting dogs Canis Minor (Procyon = 5N, 115E) and Canis Major (Sirius = 17S and 101E)

Time lapse image of Orion Betelgeuse Arcturus Sirius Rigel

Late winter/early spring constellations Pollux/Procyon line (115E) forms good north-south arc Pollux (28N, 115E) is readily recognized with twin Castor Gemini Leo Pollux Regulus Procyon Regulus (12N, 152E) marks start of sparsely populated region of stars in N. hemisphere – closest is Arcturus (142W)