ECG Rhythm Interpretation

Slides:



Advertisements
Similar presentations
ECG Rhythm Interpretation
Advertisements

EKG 101 Deborah Goldstein Georgetown University
Ventricular Conduction Disturbances
ECG Rhythm Interpretation
Advanced ECG’s for MLA’s
ECGG Interpretation Najib Ul Haq coyright 2004 Anna Story.
Atrial and Ventricular Enlargement
Practice ECGs Part I Copyright © 2006 by Mosby Inc. All rights reserved.
ECG Rhythm Interpretation
EKG Myocardial infarction and other ischemic states
ECG diagnosis.
ECG Interpretation Chapter 22.
ECG Rhythm Interpretation
ECG.
ECG Rhythm Interpretation
ECG Interpretation Criteria Review
ECG Rhythm Interpretation
Portland Community College
ECG Rhythm Interpretation
Chapter 11 Interpretation of Electrocardiogram Tracings
An Introduction to the 12 lead ECG
Myocardial Ischemia, Injury, and Infarction
Fast & Easy ECGs, 2nd E – A Self-Paced Learning Program
1. Review normal electrical flow through the heart. 2. Discuss normal coronary artery anatomy and associated leads reflecting ischemic changes. 3. Identify.
Myocardial Ishcemia and Infarction
FOR MORE FREE MEDICAL POWERPOINT PRESENTATIONS VISIT WEBSITE
Chapter 17 Interpreting the Electrocardiogram
Fast & Easy ECGs, 2nd E – A Self-Paced Learning Program
12 Lead ECGs: Bundle Branch Blocks & Hemiblocks Terry White, RN.
EKG Interpretation.
Lecture Objectives Describe sinus arrhythmias Describe the main pathophysiological causes of cardiac arrhythmias Explain the mechanism of cardiac block.
F. Propagation of cardiac impulse The Normal Conduction System.
Basics of EKG Interpretation
ECG interpretations.
ECG Rhythm Interpretation
Normal Impulse Conduction
Cardiac Conduction. Physiology of Cardiac Conduction The excitatory & electrical conduction system of the heart is responsible for the contraction and.
For more presentations FOR MORE FREE MEDICAL POWERPOINT PRESENTATIONS VISIT WEBSITE blogspot.com.
Name this dysrhythmia:. Idioventricular (ventricular bradycardia)
ECG Rhythm Interpretation
EKG Interpretation Lecture #1. Current Flow & Lead Axis Critical Learning Points: –If the electrical current from the heart is moving toward an electrode.
Garcia, Cholson Banjo E..  Conduction disturbance  Originate from: ◦ sinus node ◦ AV node ◦ bundle branch.
ELECTROCARDIOGRAM (ECG)
ECGs AFMAMS Resident Orientation March Lecture Outline ECG Basics Importance of systematically reading ECGs Rate Rhythm Axis Hypertrophy Intervals.
“Advanced” EKG Reading Stefan Da Silva With special guest…. Dr. S. Weeks.
EKG Overview.
ECG PRACTICAL APPROACH Dr. Hossam Hassan Consultant Emergency Medicine.
ECG Part II. Rate-measure of frequency of occurrence of cardiac cycles(b/m) < 60 beats/min is a bradycardia beats/min is normal >100 beats/min.
Understanding the 12-lead ECG, part II By Guy Goldich, RN, CCRN, MSN Nursing2006, December Online:
Q I A 6 Fast & Easy ECGs – A Self-Paced Learning Program QRS Complexes.
Podcheko Alexey, MD Upd Fall HYPERTROPHY & ENLARGEMENT OF HEART CHAMBERS.
ECG Rhythm Interpretation
2 Great resources ECG Pedia
Wave, IntervalDuration (msec) P wave duration
READING &INTERPRITING ECG continuation
UCI Internal Medicine Mini-Lecture
ECG Rhythm Interpretation
EKG’s By: Robby Zehrung. Leads  In a 3-lead View there are two types of Leads:  Bipolar  Lead I: Right Arm to Left Arm  Lead II: Right Arm to Left.
Electro Cardio Graphy (ECG)
DATA INTERPRETATION-1 1. BASIC ECG 2. Lipid Profile
TWELVE-LEAD INTERPRETATION
Myocardial Infarction and Ischemia
ECG Rhythm Interpretation
ECG Rhythm Interpretation
ECG Rhythm Interpretation
ECG Rhythm Interpretation
ECG Rhythm Interpretation
ECG Rhythm Interpretation
ECG Rhythm Interpretation
FOR MORE FREE MEDICAL POWERPOINT PRESENTATIONS VISIT WEBSITE
Presentation transcript:

ECG Rhythm Interpretation Module VI Advanced 12-Lead Interpretation

Course Objectives To recognize the normal rhythm of the heart - “Normal Sinus Rhythm.” To recognize the 13 most common heart arrhythmias. To recognize an acute myocardial infarction and bundle branch blocks on a 12-lead ECG.

Learning Modules ECG Basics How to Analyze a Rhythm Normal Sinus Rhythm Heart Arrhythmias Diagnosing a Myocardial Infarction Advanced 12-Lead Interpretation

The 12-Lead ECG The 12-Lead ECG contains a wealth of information. In Module V you learned that ST segment elevation in two leads is suggestive of an acute myocardial infarction. In this module we will cover: ST Elevation and non-ST Elevation MIs Left Ventricular Hypertrophy Bundle Branch Blocks

ST Elevation and non-ST Elevation MIs When myocardial blood supply is abruptly reduced or cut off to a region of the heart, a sequence of events occur beginning with ischemia (inadequate tissue perfusion), followed by necrosis (infarction), and eventual fibrosis (scarring) if the blood supply isn't restored in an appropriate period of time. The ECG changes over time with each of these events…

ECG Changes Ways the ECG can change include: ST elevation & depression Appearance of pathologic Q-waves T-waves peaked flattened inverted

ECG Changes & the Evolving MI Non-ST Elevation There are two distinct patterns of ECG change depending if the infarction is: ST Elevation ST Elevation (Transmural or Q-wave), or Non-ST Elevation (Subendocardial or non-Q-wave)

ST Elevation Infarction The ECG changes seen with a ST elevation infarction are: Before injury Normal ECG Ischemia ST depression, peaked T-waves, then T-wave inversion Infarction ST elevation & appearance of Q-waves Fibrosis ST segments and T-waves return to normal, but Q-waves persist

ST Elevation Infarction Here’s a diagram depicting an evolving infarction: A. Normal ECG prior to MI B. Ischemia from coronary artery occlusion results in ST depression (not shown) and peaked T-waves C. Infarction from ongoing ischemia results in marked ST elevation D/E. Ongoing infarction with appearance of pathologic Q-waves and T-wave inversion F. Fibrosis (months later) with persistent Q- waves, but normal ST segment and T- waves

ST Elevation Infarction Here’s an ECG of an acute inferior wall MI: Look at the inferior leads (II, III, aVF). Question: What ECG changes do you see? ST elevation and Q-waves Extra credit: What is the rhythm? Atrial fibrillation (irregularly irregular with narrow QRS)!

Non-ST Elevation Infarction Here’s an ECG of an inferior wall MI later in time: Now what do you see in the inferior leads? ST elevation, Q-waves and T-wave inversion

Non-ST Elevation Infarction The ECG changes seen with a non-ST elevation infarction are: Before injury Normal ECG Ischemia ST depression & T-wave inversion Infarction ST depression & T-wave inversion Fibrosis ST returns to baseline, but T-wave inversion persists

Non-ST Elevation Infarction Here’s an ECG of an evolving non-ST elevation MI: Note the ST depression and T-wave inversion in leads V2-V6. Question: What area of the heart is infarcting? Anterolateral

Left Ventricular Hypertrophy

Left Ventricular Hypertrophy Compare these two 12-lead ECGs. What stands out as different with the second one? The QRS complexes are very tall (increased voltage) Normal Left Ventricular Hypertrophy Answer:

Left Ventricular Hypertrophy Why is left ventricular hypertrophy characterized by tall QRS complexes? Increased QRS voltage As the heart muscle wall thickens there is an increase in electrical forces moving through the myocardium resulting in increased QRS voltage. LVH ECHOcardiogram

Left Ventricular Hypertrophy Specific criteria exists to diagnose LVH using a 12-lead ECG. For example: The R wave in V5 or V6 plus the S wave in V1 or V2 exceeds 35 mm. However for now, all you need to know is that the QRS voltage increases with LVH.

Bundle Branch Blocks

Bundle Branch Blocks Turning our attention to bundle branch blocks… Remember normal impulse conduction is SA node  AV node  Bundle of His  Bundle Branches  Purkinje fibers

Normal Impulse Conduction Sinoatrial node AV node Bundle of His Bundle Branches Purkinje fibers

Bundle Branch Blocks So, depolarization of the Bundle Branches and Purkinje fibers are seen as the QRS complex on the ECG. Right BBB Therefore, a conduction block of the Bundle Branches would be reflected as a change in the QRS complex.

Bundle Branch Blocks With Bundle Branch Blocks you will see two changes on the ECG. QRS complex widens (> 0.12 sec). QRS morphology changes (varies depending on ECG lead, and if it is a right vs. left bundle branch block). Look at the V leads to recognize Bundle Branch Blocks

Bundle Branch Blocks Why does the QRS complex widen? When the conduction pathway is blocked it will take longer for the electrical signal to pass throughout the ventricles because the impulse has to travel from cell to cell inefficiently.

Right Bundle Branch Blocks What QRS morphology is characteristic? For RBBB the wide QRS complex assumes a unique, virtually diagnostic shape (upright “rabbit ears”) in those leads overlying the right ventricle, V1 and V2. V1 “Rabbit Ears”

Left Bundle Branch Blocks What QRS morphology is characteristic? For LBBB the wide QRS complex assumes a wide predominantly downward deflection leads opposite the left ventricle, i.e., V1 and V2 (right ventricular leads) and the QRS is upright and wide in V5 and V6 (may or may not be notched)

Guess: RBBB or LBBB? Wide QRS Rabbit Ears in V1 and V2 = RBBB!

Guess: RBBB or LBBB? = LBBB! Recall that in either RBBB or LBBB, Wide QRS Mostly down in V1 and V2 Mostly up in lead V6 = LBBB! Recall that in either RBBB or LBBB, the QRS must be wide (> .12 sec)

What causes BBBs? Coronary artery disease Thickened, stiffened or weakened heart muscle (cardiomyopathy) Infection (myocarditis) of the heart muscle Hypertension Scar tissue after heart surgery Congenital abnormality

Summary This Module introduced you to: ST Elevation and Non-ST Elevation MIs Left Ventricular Hypertrophy Bundle Branch Blocks Don’t worry too much right now about trying to remember all the details. You’ll focus more on advanced ECG interpretation in your clinical years!

End of Module VI Advanced 12-Lead Interpretation Proceed to Module VI Practice Quiz on your iROCKET Course