CHEMISTRY ANALYTICAL CHEMISTRY Fall

Slides:



Advertisements
Similar presentations
Chapter 14 Equilibria in Acid-Base Solutions
Advertisements

Iodimetry using iodate-thiosulfate
______________________________________ Class, Wednesday, Oct 27, 2004 Calcium Determination is due this Friday at class time. Exam 2 on Wed, Nov 3. Covers.
Reduction- Oxidation Reactions
Version 2012 Updated on 0510 Copyright © All rights reserved Dong-Sun Lee, Prof., Ph.D. Chemistry, Seoul Women’s University Chapter 17 Applications of.
1 Calculating the Cell Potential The process of calculating the cell potential is simple and involves calculation of the potential of each electrode separately,
Determination of Vitamin C Concentration by Titration
CHEMISTRY ANALYTICAL CHEMISTRY Fall Lecture 17 Chapter 13: Acid-Base Titrations.
Analysis of Laundry Bleach: An Oxidation-Reduction Titration Tadas Rimkus AP Chemistry Period 2.
Lecture 27 11/07/05. Two things happening: First: Titration reaction (Ce 4+ + Fe 2+ ⇄ Ce 3+ + Fe 3+ ) –Goes to completion –Before equiv. point: excess.
Lecture 28 11/09/05. At the equivalence point: clarification.
Lecture 20 10/19/05.
Copyright McGraw-Hill Chapter 17 Acid-Base Equilibria and Solubility Equilibria Insert picture from First page of chapter.
Titremetric analysis Dr. Mohammad Khanfar. Concept of Titremetric analysis In general, we utilize certain property of a substance to be analyzed in order.
1 Solution Stoichiometry The concentration of a solution is the amount of solute present in a given quantity of solvent or solution. M = molarity = moles.
1 11 Reactions in Aqueous Solutions II: Calculations.
Chapter 14 Principles of Neutralization Titrations
Titration Chemistry Basics. Titration Lab technique commonly utilized to determine an UNKNOWN concentration of a chemical compound with a KNOWN concentration.
Solution Stoichiometry
Volumetric Analysis Oxidation- Reduction
Redox Titrations Introduction 1.) Redox Titration
Titrations Introduction 1.) Buret Evolution Primary tool for titration
Chpt. 15 Volumetric Analysis - Oxidation-Reduction.
Redox Titrations Introduction 1.) Redox Titration
Chapter 16: Applications of Aqueous Equilibria Renee Y. Becker Valencia Community College 1.
Chemistry Chapter 17 Applications of Aqueous Equilibria.
TITRATION This involves removing small samples from the reaction mixture at different times and then titrating the sample to determine the concentration.
Preadjustment of analyte oxidation state
Types of Chemical Reactions and Solution Stoichiometry.
Chapter 7 Let the Titrations Begin. Titration n Titration –A procedure in which one substance (titrant) is carefully added to another (analyte) until.
Acid-Base Titrations Introduction 3.)Overview  Titrations are Important tools in providing quantitative and qualitative data for a sample.  To best understand.
CHAPTER 12 ELECTRODE POTENTIALS AND THEIR APPLICATIONS TO XIDATION/REDUCTION TITRATIONS Introduction to Analytical Chemistry.
Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount.
Oxidation-Reduction Titration Dr. A.K.M. Shafiqul Islam August 24, 2007.
Preadjustment of analyte oxidation state
1. OXIDATION REDUCTION (a) Addition of oxygen Removal of oxygen (b) Removal of hydrogen Addition of hydrogen (c) Loss of electron Gain of electron (d)
Exp. 16: Volumetric Analysis: Redox Titration Normality = eq wt of solute L solution Acid/bases: #eq = # H + or OH - ionized Redox reactions – transfer.
TITRIMETRIC METHODS OF ANALYSIS
An Introduction To Electrochemistry Reduction-Oxidation Titration.
Precipitation Titrations Dr. Riham Ali Hazzaa Analytical chemistry Petrochemical Engineering.
Ch 16: Redox Titrations Redox titrations are essential in measuring the chemical composition of a superconductor (YBa 2 Cu 3 O 7 - 2/3 Cu 2+ and 1/3 the.
REDOX TITRATIONS. REDOX Titrations A redox titration is used to determine the concentration of an oxidizing or reducing agent. The reaction needs to have.
Determination of blood glucose Done by: Sahar Al-Subaie.
Coulometric Titration Answers for prelab and write up.
Acid - Base Titration. What is a Titration? A titration is a procedure used in chemistry to determine the concentration of an unknown acid or base. A.
bjects/3312/ /blb1703.html.
 TITRATIONS.  What did one titration tell the other?  Let's meet at the endpoint.  Why are chemists great for solving problems?  They have all the.
Chapter 16: Aqueous Ionic Equilibria CHE 124: General Chemistry II Dr. Jerome Williams, Ph.D. Saint Leo University.
Principles and application
Volumetric Analysis Stirrin g bar One method in volumetric analysis is titration In titration: - substance to be analysed is known as the analyte - the.
7 장 적정 Stirring bar One method in volumetric analysis is titration In titration: - substance to be analysed is known as the analyte - the solution added.
Oxidation-Reduction Reactions
PROPERTIES OF SOLUTIONSPROPERTIES OF SOLUTIONSPROPERTIES OF SOLUTIONSPROPERTIES OF SOLUTIONS 1. A solution is composed of: solute the solute : the minor.
© 2009, Prentice-Hall, Inc. Molarity Two solutions can contain the same compounds but be quite different because the proportions of those compounds are.
Chapter 20 Applications of Oxidation/Reduction Titrations.
Ch. 20 Applications of oxidation/reduction titrations 1.Auxiliary oxidizing and reducing reagents Fe(II), Fe(III) - Auxiliary reducing reagents A number.
Oxidation-Reduction Titrations PHARMACEUTICAL ANALYTICAL CHEMISTRY PHC
Solution Concentration Chapter 4 Reactions in Aqueous Solutions (part 2)
Chapter 19 Applications of Standard Electrode Potentials.
Titration. Acid–Base Titration The concentration of an acid especially a weak one or a weak base in water is difficult to measure directly. But we can.
Solution Stoichiometry
7.00 Let the Titrations Begin
HC CHEMISTRY HC CHEMISTRY CHEMISTRY IN SOCIETY (E) CHEMICAL ANALYSIS.
Determination of Cu in Brass
Chapter 14 REDOX AND POTENTIOMETRIC TITRATIONS
Chapter 7 Let the Titrations Begin
VOLUMETRIC ANALYSIS B.Sc. Sneha S. Mule Assistant Professor
Acid-Base Reactions.
Presentation transcript:

CHEMISTRY 59-320 ANALYTICAL CHEMISTRY Fall - 2010 Chapter 16: Redox titration

16-1 The shape of a redox titration curve A redox titration is based on an oxidation-reduction reaction between analyte and titrant. Consider the titration of iron(II) with standard cerium(IV), monitored potentiometrically with Pt and calomel electrodes. The potentials show above is in 1 M HClO4 solution. Note that equilibria 16-2 and 16-3 are both established at the Pt electrode.

There are three distinct regions in the titration of iron(II) with standard cerium(IV), monitored potentiometrically with Pt and calomel electrodes. Before the equivalence point, where the potential at Pt is dominated by the analyte redox pair. At the equivalence point, where the potential at the indicator electrode is the average of their conditional potential. After the equivalence point, where the potential was determined by the titratant redox pair.

Before the equivalence point: using analyte’s concentration to calculate E+ At the equivalence point: needs both redox pairs to calculate (why?) E of the cell

After the equivalence point: There are two special points during the above titration process: (1) when V = ½ Ve, [Fe3+] = [Fe2+] and E+ = E°(Fe3+ | Fe2+) ; (2) when V = 2 Ve, [Ce4+] = [Ce3+] and E+ = E°(Ce4+ | Ce3+) = 1.70 V. Summary The greater the difference in reduction potential between analyze and titrant, the sharper will be the end point. The voltage at any point in this titration depends only on the ratio of reactants; it will be independent of dilution. Prior to the equivalence point, the half-reaction involving analyze is used to find the voltage because the concentrations of both the oxidized and the reduced forms of analyte are known. After the equivalence point, the half-reaction involving titrant is employed. At the equivalence point, both half-reactions are used simultaneously to find the voltage.

For the titration of Tl+ (Thallium) by IO3- in 1.00 M HCl solution The curve is not symmetric about the equivalence point. This is because the stoichiometry of reactants is 2:1, not 1:1. Still, the curve is so steep near the equivalence point that negligible error is introduced if the center of the steep part is taken as the end point.

16-2 Finding the end point or A redox indicator is a compound that changes color when it goes from its oxidized to its reduced state. or For ferroin, with E° = 1.147 V we expect the color change to occur in the approximate range 1.088 V to 1.206 V with respect SHE

A redox titration is feasible if the difference between analyte and titrant is > 0.2 V. If the difference in the formal potential is > 0.4 V, then a redox indicator usually gives a satisfactory end point.

Starch-Iodine Complex Starch is the indicator of choice for those procedures involving iodine because it forms an intense blue complex with iodine. Starch is not a redox indicator; it responds specifically to the presence of I2, not to a change in redox potential. The active fraction of starch is amylose, a polymer of the sugar α-d-glucose. In the presence of starch, iodine forms I6 chains inside the amylose helix and the color turns dark blue

16-3 Adjustment of analyte oxidation state Sometimes one needs to adjust the oxidation state of analyte before it can be titrated. Pre-adjustment must be quantitative and one must eliminate excess pre-adjustment reagent so that it won’t interference the subsequent titration. Pre-oxidation: powerful oxidants that can be easily removed after preoxidation include peroxydisulfate, silver(II) oxide, sodium bismuthate. Definition: Disproportionation: a reactant oxidizes and reduces itself, such as H2O2 in boiling water. Pre-reduction: Process of reducing an analyte to a lower oxidation state prior to performing a titration with an oxidizing agent. Amalgam: a solution of anything in mercury.

16-4 Oxidation with potassium permanganate KMnO4 is a strong oxidant with an intense violet color. In strongly acidic solutions (pH < 1), it is reduced to Mn2+. In neutral or alkaline solution, it is reduced to brown solid MnO2. In strongly alkaline solution ( 2 M NaOH), green manganate ion (MnO42-) is produced.

16-5 Oxidation with Ce4+ Reduction of Ce4+ to Ce3+ proceeds cleanly in acidic solutions. The aquo ion, Ce(H20)n4+, probably does not exist in any of these solutions, because Ce(IV) binds anions (ClO4-, SO42- NO3-, Cl-) very strongly.

16-7 Methods Involving Iodine Iodimetry: a reducing analyte is titrated directly with iodine (to produce I−). iodometry, an oxidizing analyte is added to excess I− to produce iodine, which is then titrated with standard thiosulfate solution. Iodine only dissolves slightly in water. Its solubility is enhanced by interacting with I- A typical 0.05 M solution of I2 for titrations is prepared by dissolving 0.12 mol of KI plus 0.05 mol of I2 in 1 L of water. When we speak of using iodine as a titrant, we almost always mean that we are using a solution of I2 plus excess I−.

Preparation and Standardization of Solutions Acidic solutions of I3- are unstable because the excess I− is slowly oxidized by air: In neutral solutions, oxidation is insignificant in the absence of heat, light, and metal ions. At pH ≳ 11, triiodide disproportionates to hypoiodous acid (HOI), iodate, and iodide. An excellent way to prepare standard I3- is to add a weighed quantity of potassium iodate to a small excess of KI. Then add excess strong acid (giving pH ≈ 1) to produce I2 by quantitative reverse disproportionation:

Problems Would indigo tetrasulfonate be a suitable redox indicator for the titration of Fe(CN)64- with Tl3+ in 1 M HCl? Solution: Standard potentials: indigo tetrasulfonate is 0.36 V; Fe(CN)63-/ Fe(CN)64- is 0.356 V; Tl3+/Tl+, 0.77 V. The end-point potential will be between 0.356 and 0.77 V. Indigo tetrasulfonate changes color near 0.36 V. Therefore it will not be a useful indicator for this titration.

Given the following data select the best indicator for the titration of iron(II) with thallium(III), using a S.C.E. reference electrode. (a) methylene blue (b) diphenylamine sulfonic acid (c) diphenylamine Which of the following titrations would give a titration curve symmetric around the equivalence point? (a) Na2S2O3 titrated with I2. (b) ascorbic acid titrated with I2. (c)As4O6 titrated with I2.