Instrumentation Amplifiers

Slides:



Advertisements
Similar presentations
Lecture 2 Operational Amplifiers
Advertisements

Lecture 3 Operational Amplifiers—Non-ideal behavior
1.6 Op-Amp Basics High input impedance Low output impedance Made using difference amplifiers having 2 inputs and at least 1 output 1 Note: Terminals for.
Operational Amplifiers
Summing Amplifier -+-+ RFRF R4R4 + IFIF I4I4 VoVo R3R3 + I3I3 V3V3 V4V4 R2R2 + I2I2 V2V2 R1R1 + I1I1 V1V1 RLRL V id.
Operational Amplifiers
Operational Amplifiers (Op Amps) Discussion D3.1.
Lecture 91 Loop Analysis (3.2) Circuits with Op-Amps (3.3) Prof. Phillips February 19, 2003.
Operational Amplifier
Chapter 2 – Operational Amplifiers
Review of Linear Op-Amp Circuits We will quickly review the analysis & design of linear op-amp circuits that use negative feedback: Non-inverting amplifier.
Op Amps Lecture 30.
INTEGRATED CIRCUITS EE OVERVIEW  Introduction  What are Op-Amps?  Circuit symbol and Pin- Configuration  Inverting and Non-inverting modes..
ECE 2006 Chapter 5: Operational Amplifiers. Differential Amplifier Not Practical Prior to IC Fabrication 2 Inputs, Output is A v *(V 1 - V 2 )
Chapter 2 – Operational Amplifiers Introduction Textbook CD
1 ECE 3336 Introduction to Circuits & Electronics MORE on Operational Amplifiers Spring 2015, TUE&TH 5:30-7:00 pm Dr. Wanda Wosik Set #14.
Operational Amplifiers (Op Amps) Discussion D3.1.
Instrumentation Amplifier
Lecture II: Linear Applications of Opamp
Introduction to Op Amps
Announcements Assignment 3 due now, or by tomorrow 5pm in my mailbox Assignment 4 posted, due next week –Thursday in class, or Friday 5pm in my mailbox.
ENTC 4350 BIOMEDICAL INSTRUMENTATION I BASIC DIFFERENTIAL AMPLIFIER.
Basic Block Diagram of Op-Amp
“Op-Amp” Operational Amplifier Non Inverting Amplifier Inverting Amplifier Adder –(and Subtractor using an Inverter) Differential Amplifier Integrator.
ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION CHARACTERISTICS CONFIGURATIONS.
Introduction to Op Amp Circuits ELEC 121. April 2004ELEC 121 Op Amps2 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain.
Analog Electronics Lecture 5.
Analogue Electronics II EMT 212/4
EKT314/4 Electronic Instrumentation
A. L. Wicks Dept. of Mechanical Engineering Virginia Tech 1 Advanced Instrumentation By A.L. Wicks Department of Mechanical Engineering Virginia Tech A.
© 2012 Pearson Education. Upper Saddle River, NJ, All rights reserved. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 02 Operational Amplifiers.
Module 4 Operational Amplifier
OPERATIONAL AMPLIFIERS. BASIC OP-AMP Symbol and Terminals A standard operational amplifier (op-amp) has; V out is the output voltage, V+ is the non-inverting.
An understanding of the complex circuitry within the op amp is not necessary to use this amplifying circuit in the construction of an amplifier.
Fundamentals of Electric Circuits Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 4: Electrical Circuits
1 Tai-Cheng Lee Fall 2007 Operational Amplifiers Tai-Cheng Lee Electrical Engineering/GIEE, NTU.
HW #5 7.10, 7.21, 7.71, 7.88 Due Tuesday March 3, 2005.
1 1.6 Op-Amp Basics Basic Op-Amp Op-amp equivalent circuit Practical (R i = high, R o = small)Ideal (R i =∞, R o = 0)
Operational Amplifiers Op Amps – a useful building block K. El-Ayat 11.
Amplifiers. BASIC AMPLIFIER CONCEPTS Ideally, an amplifier produces an output signal with identical waveshape as the input signal, but with a larger.
Applications of OP-AMP. Introduction Operational amplifier using IC's is inexpensive, versatile and easy to use. For this reason they are used not only.
Instrumentation Amplifiers Passive Transducer Measurement Configuration: For passive transducers in a bridge configuration the voltage of interest is the.
OP-AMP APPLICATIONS CONSTANT-GAIN MULTIPLIER CONTROLLED SOURCES INSTRUMENTATION AMPLIFIER.
CONSTANT-GAIN MULTIPLIER CONTROLLED SOURCES INSTRUMENTATION AMPLIFIER
1 Operational Amplifiers n Ideal Op-Amp –input terminals –differential gain, open-loop gain.
OP-AMPs Op Amp is short for operational amplifier. An operational amplifier is modeled as a voltage controlled voltage source. An operational amplifier.
OPERATIONAL AMPLIFIERS + - Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
EE101-Lecture 8 Operational Amplifier Basics of amplifiers EE101 Fall 2012 Lect 8- Kang1 Noninverting amplifier & Inverting amplifier.
1 Operational Amplifiers 1. 2 Outlines Ideal & Non-ideal OP Amplifier Inverting Configuration Non-inverting Configuration Difference Amplifiers Effect.
Differential voltage-gain device that amplifies the difference between the voltages existing at its two input terminal. An instrumentation (or instrumentational)
CHAPTER 20 OPERATIONAL AMPLIFIERS (OP-AMPS). Introduction to operational amplifiers Symbol and Terminals.
Ref:080114HKNOperational Amplifier1 Op-Amp Properties (1)Infinite Open Loop gain -The gain without feedback -Equal to differential gain -Zero common-mode.
Guided by - Prof. N A Gajjar Prepared by : Hemaxi Halpati : Priyank Hirani : Manish Jatiya : Rakesh.
Module 2 Operational Amplifier Basics
ARUN MUCHHALA ENGINEERING COLLEGE- DHARI [ ] ANALOG ELECTRONICS Prajapati Omprakash rd ELECTRICAL DEPARTMENT ANALOG ELECTRONICS.
Operational Amplifiers Chapter 10 Boylestad Electronic Devices and Circuit Theory.
Chapter 10: Operational Amplifiers
PUSAT PENGAJIAN KEJURUTERAAN KOMPUTER & PERHUBUNGAN
Operational Amplifier
Analogue Electronics Circuit II EKT 214/4
Analogue Electronic 2 EMT 212
ECE 1270: Introduction to Electric Circuits
Differential Op - Amplifier TIM. 1 Introduction 2 Differential Amplifier: 2.1 Input Resistances: 2.2 Differential Gain: 2.3 Common Mode Input: 2.4 Common.
OP-AMPS: basics & Inverting-amplifier
Department of CNET Electronic Circuit II
تقویت کننده های عملیاتی
Medical electronics II
Department of CNET Electronic Circuit II
Presentation transcript:

Instrumentation Amplifiers Passive Transducer Measurement Configuration: For passive transducers in a bridge configuration the voltage of interest is the differential voltage e = VB - VA Therefore need a difference amplifier with a committed adjustable gain Ad Want Vo = Ad(VB - VA) = Ad e VCM = Want to reject VCM R R+DR R R IA Vo = Ad e

IA Active Transducer Measurement Configuration: Instrumentation Amplifiers: Active Transducer Measurement Configuration: For an active transducer the differential voltage e created by the transducer is of interest Therefore need a difference amplifier with a committed adjustable gain Ad Want Vo = Ad e Surface whose temperature is to be measured may be at some non-zero potential (VCM) relative to ground Want to reject VCM IA Vo = Ad e

Transducer and Instrumentation Amplifier (IA) Circuit Model: Instrumentation Amplifiers: Transducer and Instrumentation Amplifier (IA) Circuit Model: IA has a committed adjustable differential gain Ad If e is the differential voltage of interest (vid) Want Vo = Ade Want a high CMRR to reject VCM Want high Zin and low Zout Zd is the differential input impedance (1 - 100 MW) ZCM is the common mode input impedance (100 MW) IA not an op-amp Op amp open loop uncommitted gain IA closed loop committed gain IA has higher Zin and CMRR IA has lower Vos and Ibias and drift with temperature R1 and R2 are the source impedances of input transducer - R1 may not equal R2 IA

If bridge is balanced Vp = 0 If bridge is not balanced Vp ≠ 0 Instrumentation Amplifiers: Transducer (Sensor) and Instrumentation Amplifier Common Mode Voltage Equivalent Circuit: A Set e = 0 B Unwanted parasitic differential voltage Vp produced by VCM due to imperfections in the transducer and/or transducer connections. If bridge is balanced Vp = 0 If bridge is not balanced Vp ≠ 0 Vp will contaminate Vo Vo ≠ Ad e Vo = Ad (e + Vp) Therefore even if the IA has an infinite CMRR (i.e ACM =0) still have a common mode output voltage error

Assuming the worst case imbalance: R1 = 0 Instrumentation Amplifiers: Transducer (Sensor) and Instrumentation Amplifier Common Mode Voltage Equivalent Circuit: A Set e = 0 B A Assuming the worst case imbalance: R1 = 0 Circuit becomes → Usually specified with a 1kW source impedance imbalance B

Increasing ZCM reduces Vp Instrumentation Amplifiers: IA CMMR = A B Circuit CMRR = Increasing ZCM reduces Vp

Differential Amplifier: (Single op-amp instrumentation amplifier) Instrumentation Amplifiers: Differential Amplifier: (Single op-amp instrumentation amplifier) To obtain vo in terms of v1and v2 use superposition theorem

Differential Amplifier: (Single op-amp instrumentation amplifier) Instrumentation Amplifiers: Differential Amplifier: (Single op-amp instrumentation amplifier) Short input to v2 (Inverting Configuration)

Differential Amplifier: (Single op-amp instrumentation amplifier) Instrumentation Amplifiers: Differential Amplifier: (Single op-amp instrumentation amplifier) Short input to v1 (Noninverting Configuration)

Differential Amplifier: (Single op-amp instrumentation amplifier) Instrumentation Amplifiers: Differential Amplifier: (Single op-amp instrumentation amplifier) To obtain vo in terms of v1and v2 use superposition theorem

Differential Amplifier: (Single op-amp instrumentation amplifier) Instrumentation Amplifiers: Differential Amplifier: (Single op-amp instrumentation amplifier) Differential Input Impedance: Rin, Rid, Zid, Zd Zd = 2R1 Zd is limited

Transducer and Differential Amplifier Circuit Model: Instrumentation Amplifiers: Transducer and Differential Amplifier Circuit Model: External Circuit Instrumentation Amplifier Op Amp CMRR, Zd and ZCM are important attributes of an IA.

CMRR, Zd and ZCM are important attributes of an IA. Instrumentation Amplifiers: Transducer and Differential Amplifier Common Mode Voltage Equivalent Circuit: A A RS2 RS1 Ri1+ Rf1 + Ro Ri2+ Rf2 D D B D B ZCM Can assume Ro = 0 CMRR, Zd and ZCM are important attributes of an IA.

Three Op Amp Instrumentation Amplifier: Instrumentation Amplifiers: Three Op Amp Instrumentation Amplifier: CMRR and Zin are very important attributes of an IA Can increase Zin of difference amplifier configuration by adding unity gain buffers or buffers with gain

Three Op Amp Instrumentation Amplifier: Instrumentation Amplifiers: Three Op Amp Instrumentation Amplifier: CMRR and Zin are very important attributes of an IA Can increase Zin of difference amplifier configuration by adding buffers Common mode signals are not amplified if common R1 is used and connection to ground is removed.

Transducer and Three Op Amp IA Circuit Diagram: Instrumentation Amplifiers: Transducer and Three Op Amp IA Circuit Diagram: External Circuit Instrumentation Amplifier

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers:

Instrumentation Amplifiers: