Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil.

Slides:



Advertisements
Similar presentations
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Advertisements

MAP Estimation Algorithms in
Mean-Field Theory and Its Applications In Computer Vision1 1.
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London Tutorial at GDR (Optimisation Discrète, Graph Cuts.
Bayesian Belief Propagation
Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman.
Solving Markov Random Fields using Dynamic Graph Cuts & Second Order Cone Programming Relaxations M. Pawan Kumar, Pushmeet Kohli Philip Torr.
Focused Inference with Local Primal-Dual Gaps
Discrete Optimization Lecture 4 – Part 3 M. Pawan Kumar Slides available online
Graph Cut Algorithms for Computer Vision & Medical Imaging Ramin Zabih Computer Science & Radiology Cornell University Joint work with Y. Boykov, V. Kolmogorov,
Introduction to Markov Random Fields and Graph Cuts Simon Prince
ICCV 2007 tutorial Part III Message-passing algorithms for energy minimization Vladimir Kolmogorov University College London.
The University of Ontario CS 4487/9687 Algorithms for Image Analysis Multi-Label Image Analysis Problems.
ICCV 2007 tutorial on Discrete Optimization Methods in Computer Vision part I Basic overview of graph cuts.
An Analysis of Convex Relaxations (PART I) Minimizing Higher Order Energy Functions (PART 2) Philip Torr Work in collaboration with: Pushmeet Kohli, Srikumar.
Discrete Optimization for Vision and Learning. Who? How? M. Pawan Kumar Associate Professor Ecole Centrale Paris Nikos Komodakis Associate Professor Ecole.
Learning with Inference for Discrete Graphical Models Nikos Komodakis Pawan Kumar Nikos Paragios Ramin Zabih (presenter)
Markov Random Fields (MRF)
Learning to Segment with Diverse Data M. Pawan Kumar Stanford University.
Robust Higher Order Potentials For Enforcing Label Consistency
An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.
P 3 & Beyond Solving Energies with Higher Order Cliques Pushmeet Kohli Pawan Kumar Philip H. S. Torr Oxford Brookes University CVPR 2007.
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr.
2010/5/171 Overview of graph cuts. 2010/5/172 Outline Introduction S-t Graph cuts Extension to multi-label problems Compare simulated annealing and alpha-
Stereo & Iterative Graph-Cuts Alex Rav-Acha Vision Course Hebrew University.
Efficiently Solving Convex Relaxations M. Pawan Kumar University of Oxford for MAP Estimation Philip Torr Oxford Brookes University.
What Energy Functions Can be Minimized Using Graph Cuts? Shai Bagon Advanced Topics in Computer Vision June 2010.
Relaxations and Moves for MAP Estimation in MRFs M. Pawan Kumar STANFORDSTANFORD Vladimir KolmogorovPhilip TorrDaphne Koller.
Hierarchical Graph Cuts for Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller.
Measuring Uncertainty in Graph Cut Solutions Pushmeet Kohli Philip H.S. Torr Department of Computing Oxford Brookes University.
Computer vision: models, learning and inference
Extensions of submodularity and their application in computer vision
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar Slides available online
MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/24/10.
Planar Cycle Covering Graphs for inference in MRFS The Typhon Algorithm A New Variational Approach to Ground State Computation in Binary Planar Markov.
Object Stereo- Joint Stereo Matching and Object Segmentation Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on Michael Bleyer Vienna.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris Joint work with Phil Torr, Daphne Koller.
Rounding-based Moves for Metric Labeling M. Pawan Kumar Center for Visual Computing Ecole Centrale Paris.
Learning a Small Mixture of Trees M. Pawan Kumar Daphne Koller Aim: To efficiently learn a.
Discrete Optimization Lecture 2 – Part I M. Pawan Kumar Slides available online
Discrete Optimization Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Probabilistic Inference Lecture 3 M. Pawan Kumar Slides available online
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London.
Discrete Optimization in Computer Vision M. Pawan Kumar Slides will be available online
Discrete Optimization Lecture 3 – Part 1 M. Pawan Kumar Slides available online
Fast and accurate energy minimization for static or time-varying Markov Random Fields (MRFs) Nikos Komodakis (Ecole Centrale Paris) Nikos Paragios (Ecole.
Probabilistic Inference Lecture 5 M. Pawan Kumar Slides available online
Efficient Discriminative Learning of Parts-based Models M. Pawan Kumar Andrew Zisserman Philip Torr
Tractable Higher Order Models in Computer Vision (Part II) Slides from Carsten Rother, Sebastian Nowozin, Pusohmeet Khli Microsoft Research Cambridge Presented.
The University of Ontario CS 4487/9687 Algorithms for Image Analysis Multi-Label Image Analysis Problems.
Hierarchical Well-Separated Trees (HST) Edges’ distances are uniform across a level of the tree Stretch  = factor by which distances decrease from root.
Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online
Inference for Learning Belief Propagation. So far... Exact methods for submodular energies Approximations for non-submodular energies Move-making ( N_Variables.
Probabilistic Inference Lecture 2 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 1 M. Pawan Kumar Slides available online
Pushmeet Kohli. E(X) E: {0,1} n → R 0 → fg 1 → bg Image (D) n = number of pixels [Boykov and Jolly ‘ 01] [Blake et al. ‘04] [Rother, Kolmogorov and.
Tightening LP Relaxations for MAP using Message-Passing David Sontag Joint work with Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.
MAP Estimation in Binary MRFs using Bipartite Multi-Cuts Sashank J. Reddi Sunita Sarawagi Sundar Vishwanathan Indian Institute of Technology, Bombay TexPoint.
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts M. Pawan Kumar Daphne Koller Aim: To obtain accurate, efficient maximum a posteriori (MAP)
Rounding-based Moves for Metric Labeling M. Pawan Kumar École Centrale Paris INRIA Saclay, Île-de-France.
Introduction of BP & TRW-S
Alexander Shekhovtsov and Václav Hlaváč
Markov Random Fields with Efficient Approximations
Efficient Graph Cut Optimization for Full CRFs with Quantized Edges
Discrete Inference and Learning
An Analysis of Convex Relaxations for MAP Estimation
Discrete Optimization Methods Basic overview of graph cuts
Graphical Models and Learning
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts
Presentation transcript:

Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil Torr, Daphne Koller

Energy Minimization Variables V = { V 1, V 2, …, V n }

Energy Minimization Variables V = { V 1, V 2, …, V n }

Energy Minimization VaVa VbVb Labels L = { l 1, l 2, …, l h } Variables V = { V 1, V 2, …, V n } Labeling f: { 1, 2, …, n}  {1, 2, …, h} E(f) = Σ a θ a (f(a)) + Σ (a,b) θ ab (f(a),f(b)) min f θ a (f(a)) θ b (f(b)) θ ab (f(a),f(b))

Energy Minimization VaVa VbVb E(f) min f NP hard = Σ a θ a (f(a)) + Σ (a,b) θ ab (f(a),f(b))

Metric Labeling VaVa VbVb E(f) min f = Σ a θ a (f(a)) + Σ (a,b) θ ab (f(a),f(b))

Metric Labeling VaVa VbVb s ab is non-negative d(.) is a metric distance function Low-level vision applications NP hard E(f) min f = Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b))

 Minka. Expectation Propagation for Approximate Bayesian Inference, UAI, 2001  Murphy et al. Loopy Belief Propagation: An Empirical Study, UAI, 1999  Winn et al. Variational Message Passing, JMLR, 2005  Yedidia et al. Generalized Belief Propagation, NIPS, 2001  Besag. On the Statistical Analysis of Dirty Pictures, JRSS, 1986  Boykov et al. Fast Approximate Energy Minimization via Graph Cuts, PAMI, 2001  Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic MRFs, CVPR, 2007  Lempitsky et al. Fusion Moves for Markov Random Field Optimization, PAMI, 2010  Chekuri et al. Approximation Algorithms for Metric Labeling, SODA, 2001  Goemans et al. Improved Approximate Algorithms for Maximum-Cut, JACM, 1995  Muramatsu et al. A New SOCP Relaxation for Max-Cut, JORJ, 2003  Ravikumar et al. QP Relaxations for Metric Labeling, ICML, 2006  Alahari et al. Dynamic Hybrid Algorithms for MAP Inference, PAMI 2010  Kohli et al. On Partial Optimality in Multilabel MRFs, ICML, 2008  Rother et al. Optimizing Binary MRFs via Extended Roof Duality, CVPR, Approximate Algorithms

Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) s ab d(f*(a),f*(b)) ≥

Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling ≤ M Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) s ab d(f*(a),f*(b))

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models

Integer Linear Program Number of facets grows exponentially in problem size Minimize a linear function over a set of feasible solutions

Linear Programming Relaxation Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003

Conic Programming Relaxation Muramatsu and Suzuki, 2003; Ravikumar and Lafferty, 2006

Convex Relaxations Time LP 1976 SOCP 2003 QP 2006 Tightness Expected Analyzed Kumar, Kolmogorov and Torr, NIPS 2007

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models

Move-Making Algorithms Space of All Labelings f

Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {l α } Update f = f α Boykov, Veksler and Zabih, 2001 Repeat until convergence

Expansion Algorithm Variables take label l α or retain current label Slide courtesy Pushmeet Kohli

Expansion Algorithm Sky House Tree Ground Initialize with TreeStatus:Expand GroundExpand HouseExpand Sky Slide courtesy Pushmeet Kohli Variables take label l α or retain current label

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models

Multiplicative Bounds ExpansionLP Potts2M2 d max = max i≠ k d(i,k)d min = min i≠ k d(i,k) M = d max d min

Multiplicative Bounds ExpansionLP Potts22 Metric2MO(log h) h = number of putative labels

Multiplicative Bounds ExpansionLP Potts22 Metric2MO(log h) Truncated Linear 2M2 + √2 Truncated Quadratic 2MO(√M)

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models Kumar and Koller, UAI 2009

Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {α} Update f = f α Repeat until convergence Boykov, Veksler and Zabih, 2001

Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {α} Update f = f α Repeat until convergence

Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any label M α (a) instead of the same label α

Modified Expansion Algorithm Multiplicative Bound = 2 d max = max i,k d(i,k) d max d min i = M α (a), k = M β (b), α ≠ β d min = min i,k d(i,k) i = M α (a), k = M β (b), α ≠ β

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models

Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l3 w1w1 w2w2 w3w3 w4w4 w5w5 w6w6 w7w7 w9w9 w8w8 d( i, j ) : shortest path defined by the graph

Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l d( i, j ) : shortest path defined by the graph

Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l d( i, j ) : shortest path defined by the graph d(1,4) = 3

Visualizing Metrics l5l5 l1l1 l2l2 l4l4 l3l d( i, j ) : shortest path defined by the graph d(1,2) = 5

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models

Uniform Metric l1l1 l2l2 l3l3 w w w

Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any label M α (a) instead of the same label α

Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = max i,k d(i,k) d max d min i = M α (a), k = M β (b), α ≠ β d min = min i,k d(i,k) i = M α (a), k = M β (b), α ≠ β

Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = 2w d max d min d min = min i,k d(i,k) i = M α (a), k = M β (b), α ≠ β

Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = 2w d max d min d min = 2w

Uniform Metric l1l1 l2l2 l3l3 w w w M α (a) = l α for all random variables V a Multiplicative Bound = 2 d max = 2w d min = 2w Same bound as LP

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models

HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 Graph is a Tree. Labels are leaves

HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 Edge lengths for all children are the same

HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 Edge lengths decrease from root to leaf by factor r ≥ 2

HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 w 2 ≤ w 1 /r w 3 ≤ w 1 /r w 4 ≤ w 1 /r

HST Metric w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8 w 5 ≤ w 2 /r w 6 ≤ w 2 /r w 7 ≤ w 3 /rw 8 ≤ w 3 /r

Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4

l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 M α (a) = l α

Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 Multiplicative bound of 2 for (a,b) where f*(a), f*(b)  {1,2,3}

Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 Multiplicative bound of 2 for (a,b) where f*(a), f*(b)  {4,5,6} f2f2

Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 Multiplicative bound of 2 for (a,b) where f*(a), f*(b)  {7,8,9} f2f2 f3f3

Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 f2f2 f3f3 M 1 (a) = f 1 (a)M 2 (a) = f 2 (a) M 3 (a) = f 3 (a)

Metric Labeling for 3-level HST l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w1w1 w2w2 w2w2 w2w2 w3w3 w3w3 w3w3 w4w4 w4w4 w4w4 f1f1 f2f2 f3f3 Multiplicative bound of at most 2(1+1/r)

Metric Labeling for 4-level HST Multiplicative bound of at most 2(1+1/r + 1/r 2 ) w1w1 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 w1w1 w1w1 w2w2 w2w2 w3w3 w3w3 w4w4 w5w5 w5w5 w6w6 w6w6 w7w7 w7w7 w8w8 w8w8

Metric Labeling for L-level HST Multiplicative bound = 2(1+1/r + … + 1/r L-2 ) < 2r/(r-1) Constant bound for all HST metrics

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Visualizing Metrics Uniform Metric Hierarchically Separated Tree (HST) Metrics General Metrics Move-Making for Truncated Convex Models

General Metrics Any metric can be approximated using a mixture of O(h log h) HST metrics with distortion O(log h). Fakcharoenphol, Rao and Talwar, 2003 Σ T ρ(T)d T (i,j) Σ T ρ(T) = 1 d(i,j) ≤ ≤ O(log h) d(i,j)

Metric Labeling for General Metrics Approximate d using Σ T ρ(T)d T Solve metric labeling for each HST d T Pick the labeling with the lowest energy Multiplicative bound = 2r/(r-1)*O(log h) = O(log h) Same bound as LP

Outline Convex Relaxations Move-Making Algorithms Comparison Move-Making for Metric Labeling Move-Making for Truncated Convex Models Kumar and Torr, NIPS 2008

Truncated Convex Models VaVa VbVb s ab is non-negative d(.) is a convex function E(f) min f = Σ a θ a (f(a)) + Σ (a,b) s ab min{d(f(a),f(b)), M}

Truncated Convex Models s ab is non-negative d(.) is a convex function Low-level vision applications NP hard E(f) min f = Σ a θ a (f(a)) + Σ (a,b) s ab min{d(f(a),f(b)), M} Truncated Linear Truncated Quadratic

Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any label M α (a) instead of the same label l α

Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {M α (a)} Update f = f α Repeat until convergence Any interval of labels M α (a) instead of a single label

Modified Expansion Algorithm Initialize labeling f = f 0 (say f 0 (a) = 1, for all V a ) For α = 1, 2, …, h End f α = argmin f’ E(f’) s.t. f’(a)  {f(a)} U {α, α+1, …, α+L} Update f = f α Repeat until convergence Any interval of labels M α (a) instead of a single label

Length of the Interval Submodular problem Exact optimization in polynomial time Small interval implies bigger ratio of d max /d min

Length of the Interval Non-submodular problem

Length of the Interval Submodular problem Optimization of upper bound in polynomial time Big interval implies smaller ratio of d max /d min

Length of the Interval Truncated Linear Bound = 2 + max 2M, L LM L = √2M Bound = 2 + √2 Truncated Quadratic Bound = O(√M)L = √M

Conclusion Move Making LP Potts22 MetricO(log h) Truncated Linear 2 + √2 Truncated Quadratic O(√M)

Future Work Move-making and convex relaxations connection Better measures than multiplicative bounds Designing hybrid algorithms

Questions?