Jinjun Liu,1 Edcel J. Salumbides,2

Slides:



Advertisements
Similar presentations
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Advertisements

Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Resonance enhanced two-photon ionization (R2PI) spectroscopy of halo-aromatic clusters.
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
In Search of the “Absolute” Optical Phase
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
GENERATION OF WIDELY TUNABLE FOURIER-TRANSFORM-LIMITED PULSED TERAHERTZ RADIATION USING NARROWBAND NEAR-INFRARED LASER RADIATION Jinjun Liu, Christa Haase,
3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~
Masters Course: Experimental Techniques Detection of molecular species (with lasers) Techniques Direct absorption techniques Cavity Ring Down Cavity Enhanced.
NO-He collisions: First fully state-selected differential cross sections obtained with ion imaging A.Gijsbertsen, H. Linnartz, J. Klos a, F.J. Aoiz a,
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Spectroscopy with comb-referenced diode lasers
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Novel Approaches to Doppler-Free Ion Imaging I. Two-Color Reduced-Doppler Imaging II. Doppler-Free/Doppler-Sliced Imaging Cunshun Huang, Wen Li, Sridhar.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
Fig. 3 Wind measurements experimental setup Lidar (light detection and ranging) operates using the same concept of microwave RADAR, but it employs a lot.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
Shaping Pulses Before They are Born Avi Pe’er Physics Department and BINA center for nano-technology, Bar Ilan University FRISNO 11 Shai Yefet, Naaman.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Institut für Physik der Atmosphäre Rayleigh-Brillouin Scattering in N 2, O 2, and Air Oliver Reitebuch 1, Benjamin Witschas 1, Ofelia Vieitez 2, Eric-Jan.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
High-Precision Sub-Doppler Infrared Spectroscopy of HeH + Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul A. Jenkins II, and.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer L. Gottfried Department of Chemistry, The University of Chicago *Current address:
Fiber-laser-based NICE-OHMS
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham
Photodissociation in Astrochemistry Leiden, 5 Feb. 2015
ISMS-Conference Champaign-Urbana, 19 June 2014 Wim Ubachs VU University Amsterdam VLT PDA-XUV High-resolution molecular spectroscopy of H 2 at 10% the.
POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY
ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen.
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
1 Dual Etalon Frequency Comb Spectrometer David W. Chandler and Kevin E. Strecker Sandia National Laboratories – Biological and Energy Sciences Division.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Broadband High-resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers Yin Wang and Gerard Wysocki Department of Electrical Engineering Princeton.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Sub-Doppler Spectroscopy of H 3 + James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
Multiplexed saturation spectroscopy with electro-optic frequency combs
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
A molecular fountain Cunfeng Cheng
Indirect Rotational Spectroscopy of HCO+
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Charles R. Markus, Adam J. Perry, James N. Hodges, Benjamin J. McCall
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
FLUORESCENCE-DEPLETION INFRARED SPECTROSCOPY
Physics beyond the Standard Model from molecular hydrogen; Part I
Presentation transcript:

DETERMINATION OF THE IONIZATION AND DISSOCIATION ENERGIES OF THE HYDROGEN MOLECULE Jinjun Liu,1 Edcel J. Salumbides,2 Urs Hollenstein,1 Jeroen C. J. Koelemeij,2 Kjeld S. E. Eikema,2 Wim Ubachs,2 and Frédéric Merkt1 “A new precision measurement and…” 1 Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich, Switzerland 2 Department of Physics and Astronomy, Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Motivation The hydrogen molecule is an important system for testing molecular quantum mechanics. The ionization energy (E i) and dissociation energy (D0) of H2 are benchmark quantities for ab initio calculations. The precision of both the experimental and theoretical values for E i(H2) and D0(H2) has been improved by more than an order of magnitude over the past three decades and the latest ones are: Experimental: E i(H2)exp=124417.476(12) cm−1 [2] D0(H2)exp=36 118.062(10) cm−1 [3] Theoretical: E i(H2)cal =124417.491 cm−1 [4] D0(H2)cal =36 118.069 cm−1 [4] New experimental determination of E i(H2) and/or D0(H2) with improved precision would represent a more stringent test for future theoretical calculations. Uncertainty of Ei(H2)cal is believed to be >~ 0.001 cm-1. [2] A. de Lange, E. Reinhold, and W. Ubachs, Phys. Rev. A 65, 064501 (2002). [3] Y. P. Zhang, C. H. Cheng, J. T. Kim, J. Stanojevic, and E. E. Eyler, Phys. Rev. Lett. 92, 203003 (2004). [4] L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995).

Energy level diagram binding energy 397 nm 202 nm (6) (7) (5) (4) (3) 1 Explain: Why EF (Ed Eyler, Wim Ubachs) Why 54p Binding energy Not to scale 397 nm 202 nm (2) 2 1 (1)

Experimental setup 202 nm 397 nm Beam 1 Beam 2 Make sure it’s not 2-photon consecutive Beam 1 Beam 2 202 nm 397 nm

Absolute frequency calibration Frequency comb at VU NIR Doppler-free saturation absorption spectroscopy of I2 at VU & ETH

Relative frequency calibration He-Ne stabilized etalon Coherent 899-29 Ti:Sa Ring Laser Lock-in / Piezo Driver/ Oscillator / RF Rriver Polarization Stabilized He-Ne PD1 AOM PD2 PZT Confocal Fabry-Perot Cavity Piezoelectric Transducer

Photoionization spectra of H2 The wave numbers are given relative to the X ^1 \Sigma ^+ _g (v = 0,N = 0) ground state. Assignment based on MQDT (Multichannel Quantum Defect Theory)

Photoionization spectra of H2 397 nm laser ~ 700 µJ The wave numbers are given relative to the X ^1 \Sigma ^+ _g (v = 0,N = 0) ground state. Assignment based on MQDT . 397 nm laser ~ 40 µJ

Sample spectrum with calibration

Measurement of Doppler shift Beam 1 Beam 2

Statistics 12604.99879(10) cm−1

Corrections and error budget

Determination of E i(H2) IR quadrupole laboratory spectrum using a FTIR, plus observational data of the Orion emission lines. [5] S. Hannemann, E. J. Salumbides, S. Witte, R. T. Zinkstok, E. J. van Duijn, K. S. E. Eikema, and W. Ubachs, Phys. Rev. A 74, 062514 (2006). [6] A. Osterwalder, A. W¨uest, F. Merkt, and Ch. Jungen, J. Chem. Phys. 121, 11810 (2004). [8] D. E. Jennings, S. L. Bragg, and J.W. Brault, Astrophys. J. 282, L85 (1984). [9] V. I. Korobov, Physical Review A 73, 024502 (2006). [10] V. I. Korobov, Physical Review A 74, 052506 (2006). [11] V. I. Korobov, Physical Review A 77, 022509 (2008). [25] J.-P. Karr, F. Bielsa, A. Douillet, J. P. Gutierrez, V. I. Korobov, and L. Hilico, Phys. Rev. A 77, 063410 (2008).

History of determination of E i(H2) In late 80s, because of the application of high-resolution laser amplifiers… Ed Eyler. Explain a little bit theory. Order of magnitude of corrections. “…which included adiabatic, nonadiabatic, relativistic, and radiative corrections to the Born–Oppenheimer energies, and are believed to be accurate to within 0.01 cm−1” [4] L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995). [24] G. Herzberg and Ch. Jungen, J. Mol. Spectrosc. 41, 425 1972. [33] G. Herzberg, Phys. Rev. Lett. 23, 1081 (1969).

History of determination of E i(H2) In late 80s, because of the application of high-resolution laser amplifiers… Ed Eyler. Explain a little bit theory. Order of magnitude of corrections. “…which included adiabatic, nonadiabatic, relativistic, and radiative corrections to the Born–Oppenheimer energies, and are believed to be accurate to within 0.01 cm−1” [4] L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995). [24] G. Herzberg and Ch. Jungen, J. Mol. Spectrosc. 41, 425 1972. [33] G. Herzberg, Phys. Rev. Lett. 23, 1081 (1969).

Dissociation energy of H2

Dissociation energy of H2 The latest experimental and theoretical values for D0(H2) are: Experimental: D0(H2)exp=36118.062(10) cm−1 [3] Theoretical: D0(H2)cal =36118.069 cm−1 [4] New determination of D0(H2) E i(H2)exp =124417.49111(43) cm-1 E i(H2+)cal=131058.1219761(10) cm-1 [9-11] E i(H)cal =109678.7717414(18) cm-1 D0(H2) =E i(H2)+E i(H2+)-2E i(H) = 36118.06962(37) cm-1 [3] Y. P. Zhang, C. H. Cheng, J. T. Kim, J. Stanojevic, and E. E. Eyler, Phys. Rev. Lett. 92, 203003 (2004). [4] L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995). [9] V.I. Korobov, Phys. Rev. A 73, 024502 (2006). [10] V.I. Korobov, Phys. Rev. A 74, 052506 (2006). [11] V.I. Korobov, Phys. Rev. A 77, 022509 (2008).

Conclusions and future work Published in: J. Chem. Phys. 130(17), 174306 (2009) Why HD? D2 and HD

Acknowledgments Thank you! Merkt Group Ubachs Group Dr. H. Knöckel (ETH Zurich) Ubachs Group (VU Amsterdam) Dr. H. Knöckel (Hannover) Edcel J. Salumbides council Merkt Group $ Swiss National Science Foundation $ $ ERC Single Investigator Award $ Thank you!

DC Stark shift

Ar seeding

Frequency chirp measurement Heterodyne (beat-note signal)[18] [18] "Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy", M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992)

Chirp analysis (a) A low-frequency-pass Fourier filter (<0.1 GHz) was applied to the photodiode signal to retrieve the pulse-amplified NIR power signal (red traces). (b) A Fourier bandpass (0.9-1.1 GHz) was used to obtain the pure beat-note signal. (c) Every 30 points in the pure beat-note signal was fit to a sin function (a “running” fit): , where is the AOM frequency (1 GHz) and the instantaneous phase shift, shown in (Figs. 1-5c). (d) The numerical derivative of was determined to obtain the instantaneous frequency excursion (e) The overall frequency change was obtained by averaging weighted by the NIR power (red trace).

Result: pump power-dependence

Simulation of frequency excursion

Simulation of frequency excursion