COUNTING TECHNIQUES PERMUTATIONS AND COMBINATIONS.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

Permutations and Combinations
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
COUNTING TECHNIQUES PERMUTATIONS AND COMBINATIONS.
T HE F UNDAMENTAL C OUNTING P RINCIPLE & P ERMUTATIONS.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
REAL NUMBERS. {1, 2, 3, 4,... } If you were asked to count, the numbers you’d say are called counting numbers. These numbers can be expressed using set.
SETS A = {1, 3, 2, 5} n(A) = | A | = 4 Sets use “curly” brackets The number of elements in Set A is 4 Sets are denoted by Capital letters 3 is an element.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
A binomial is a polynomial with two terms such as x + a. Often we need to raise a binomial to a power. In this section we'll explore a way to do just.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
The Complex Plane; DeMoivre's Theorem. Real Axis Imaginary Axis Remember a complex number has a real part and an imaginary part. These are used to plot.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
Advanced Precalculus Advanced Precalculus Notes 12.2 Permutations and Combinations.
Warm Up Evaluate  4  3  2   6  5  4  3  2 
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
Solving Trigonometric Equations Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 x y π π 6 -7 π 6 π 6.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Absolute Value.
Permutations and Combinations
INVERSE FUNCTIONS.
Operations on Functions
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
INVERSE FUNCTIONS.
Symmetric about the y axis
The Binomial Theorem.
exponential functions
Operations on Functions
Symmetric about the y axis
Presentation transcript:

COUNTING TECHNIQUES PERMUTATIONS AND COMBINATIONS

Computer Science, Statistics and Probability all involve counting techniques which are a branch of mathematics called combinatorics (ways to combine things). We'll be introducing this topic in this section. For dinner you have the following choices: ENTREES MAINS soup salad chicken prawns hamburger DESSERTS How many different combinations of meals could you make? We'll build a tree diagram to show all of the choices.  icecream

Now to get all possible choices we follow each path.  We ended up with 12 possibilities Notice the number of choices at each branch 2 choices 3 choices 2 choices ice cream soup, chicken, ice cream  chicken 2 x 3 x 2 = 12 soup, chicken,  ice cream prawns soup, prawns, ice cream  soup hamburger soup, prawns,  ice cream soup, hamburger, ice cream  soup, hamburger,  salad ice cream salad, chicken, ice cream  chicken salad, chicken,  ice cream prawns salad, prawns, ice cream  hamburger salad, prawns,  ice cream Now to get all possible choices we follow each path. salad, hamburger, ice cream  salad, hamburger, 

Multiplication Principle of Counting If a task consists of a sequence of choices in which there are p selections for the first choice, q selections for the second choice, r selections for the third choice, and so on, then the task of making these selections can be done in different ways. p x q x r If we have 6 different shirts, 4 different pants, 5 different pairs of socks and 3 different pairs of shoes, how many different outfits could we wear? 6 x 4 x 5 x 3 = 360 Much quicker than making a list!

Choosing a path……how many ways from A to C through B? A to B = 4 ways B to C = 2 ways 4x2 = 8 ways

You try! 5 X 4 X 3 = 60 ways

A little tougher…..

A permutation is an ordered arrangement of r objects chosen from n objects. For combinations order does not matter but for permutations it does. There are three types of permutations. The first is distinct with repetition. This means there are n distinct objects but in choosing r of them you can repeat an object. this means different Let's look at a 3 combination lock with numbers 0 through 9 There are 10 choices for the first number There are 10 choices for the second number and you can repeat the first number There are 10 choices for the third number and you can repeat By the multiplication principle there are 10 x 10 x 10 = 1000 choices

Permutations: Distinct Objects with Repetition This can be generalized as: Permutations: Distinct Objects with Repetition The number of ordered arrangements of r objects chosen from n objects, in which the n objects are distinct and repetition is allowed, is nr What if the lock had four choices for numbers instead of three? 104 = 10 000 choices

The second type of permutation is distinct, without repetition. Let's say four people have a race. Let's look at the possibilities of how they could place. Once a person has been listed in a place, you can't use that person again (no repetition). Based on the multiplication principle: 4 x 3 x 2 x 1 = 24 choices First place would be choosing someone from among 4 people. Now there are only 3 to choose from for second place. Now there are only 2 to choose from for third place. 4th 3rd 2nd 1st Only one possibility for fourth place.

nPr , means the number of ordered arrangements of r objects chosen from n distinct objects and repetition is not allowed. In the last example: If you have 10 people racing and only 1st, 2nd and 3rd place how many possible outcomes are there? 0! = 1

A combination is an arrangement of r objects chosen from n objects regardless of order. nCr , means the number combinations of r objects chosen from n distinct objects and repetition is not allowed. Order doesn't matter here so the combination 1, 2, 3 is not different than 3, 2, 1 because they both contain the same numbers. Note: Dividing out by the common “r” combinations. Hence, you will have fewer combinations than permutations!

You need 2 people on your committee and you have 5 to choose from You need 2 people on your committee and you have 5 to choose from. You can see that this is without repetition because you can only choose a person once, and order doesn’t matter. You need 2 committee members but it doesn't matter who is chosen first. How many combinations are there?

The third type of permutation is involving n objects that are not distinct. How many different combinations of letters in specific order (but not necessarily English words) can be formed using ALL the letters in the word REARRANGE? representative example Not Examinable.. Just for Fun  E R N R A A G E R The "words" we form will have 9 letters so we need 9 spots to place the letters. Notice some of the letters repeat. We need to use R 3 times, A 2 times, E 2 times and N and G once. 9C3  6C2  4C2  2C1  1C1 84  15  6  2  1 = 15 120 possible "words" First we choose positions for the R's. There are 9 positions and we'll choose 3, order doesn't matter That leaves 6 positions for 2 A's. That leaves 2 positions for the N. That leaves 1 position for the G. That leaves 4 positions for 2 E's.

Permutations Involving n Objects That Are Not Distinct This can be generalized into the following: Permutations Involving n Objects That Are Not Distinct

A Challenging Example. Have a go.  Permutation: Order Matters How many even numbers greater than 4000 can be formed using some or all of the digits 1, 2, 3, 4, 5, 6 if each digit must feature no more than once in a number? We could have even numbers with 4, 5 or 6 digits This Gives 4 possibilities to work with: PART A: 4, 5 or 6 EVEN digits beginning with a 4 OR 6 PART B: 4, 5 or 6 EVEN digits beginning with a 5 PART C: 5 or 6 EVEN digits beginning with a 2 PART D: 5 or 6 EVEN digits beginning with a 1 or 3

A Challenging Example. Have a go.  Permutation: Order Matters How many even numbers greater than 4000 can be formed using some or all of the digits 1, 2, 3, 4, 5, 6 if each digit must feature no more than once in a number? PART A: 4, 5 or 6 EVEN digits beginning with a 4 OR 6 2 4 3 2 + 2 4 3 2 2 + 2 4 3 2 1 2 This gives a total of 240

A Challenging Example. Have a go.  Permutation: Order Matters How many even numbers greater than 4000 can be formed using some or all of the digits 1, 2, 3, 4, 5, 6 if each digit must feature no more than once in a number? PART B: 4, 5 or 6 EVEN digits beginning with a 5 1 4 3 3 + 1 4 3 2 3 + 1 4 3 2 1 3 This gives a total of 180

A Challenging Example. Have a go.  Permutation: Order Matters How many even numbers greater than 4000 can be formed using some or all of the digits 1, 2, 3, 4, 5, 6 if each digit must feature no more than once in a number? PART C: 5 or 6 EVEN digits beginning with a 2 1 4 3 2 2 + 1 4 3 2 1 2 This gives a total of 96

A Challenging Example. Have a go.  Permutation: Order Matters How many even numbers greater than 4000 can be formed using some or all of the digits 1, 2, 3, 4, 5, 6 if each digit must feature no more than once in a number? PART D: 5 or 6 EVEN digits beginning with a 1 or 3 2 4 3 2 3 + 2 4 3 2 1 3 This gives a total of 288

A Challenging Example. Have a go.  Permutation: Order Matters How many even numbers greater than 4000 can be formed using some or all of the digits 1, 2, 3, 4, 5, 6 if each digit must feature no more than once in a number? We could have even numbers with 4, 5 or 6 digits This Gives 4 possibilities to work with: PART A: 4, 5 or 6 EVEN digits beginning with a 4 OR 6 = 240 PART B: 4, 5 or 6 EVEN digits beginning with a 5 = 180 PART C: 5 or 6 EVEN digits beginning with a 2 = 96 PART D: 5 or 6 EVEN digits beginning with a 1 or 3 =288 Number of possible even numbers greater than 4000 = 804

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au