Dr. Philip Cannata 1 Principles of Network Applications.

Slides:



Advertisements
Similar presentations
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Advertisements

Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
EEC-484/584 Computer Networks Lecture 3 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Application Layer-11 CSE401N: Computer Networks Lecture-4 Application Layer Overview HTTP.
2: Application Layer1 Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols m transport-layer service.
1 Application Layer. 2 Writing Networked Applications TCP UDP IP LL PL TCP UDP IP LL PL TCP UDP IP LL PL Web Browser Web Server Ftp Server Ftp Client.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1 Day 01 - The Internet. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Introduction to the Application Layer Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 3 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Chapter 2 Application Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 4.
1 Computer Networks Transport Layer Protocols. 2 Application-layer Protocols Application-layer protocols –one “piece” of an app –define messages exchanged.
Introduction1-1 CS 325 Computer Networks Sami Rollins Fall 2005.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss.
Introduction 1 Lecture 5 Application Layer slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
Chapter 2, slide: 1 ECE/CS 372 – introduction to computer networks Lecture 5 Announcements: r Lab1 is due today r Lab2 is posted and is due next Tuesday.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Chapter 2, slide: 1 CS 372 – introduction to computer networks* Monday June 28 Announcements: r Lab 1 is due today r Lab 2 is posted today and is due next.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Throughput: Internet scenario
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
19-1 Last time □ TCP ♦ Throughput ♦ Fairness ♦ Delay modeling □ TCP socket programming.
CHAPTER 2. Creating a network app write programs that – run on (different) end systems – communicate over network – e.g., web server software communicates.
02220 Distributed Systems: Computer Networking Basics Alessio Di Mauro Xenofon Fafoutis
1 Application Layer Lecture 4 Imran Ahmed University of Management & Technology.
Chapter Two Application Layer Prepared by: Dr. Bahjat Qazzaz CS Dept. Sept
CS 3830 Day 7 Introduction : Application Layer 2 Processes communicating Process: program running within a host. r within same host, two processes.
Introduction Protocol “layers” Networks are complex, with many “pieces”:  hosts  routers  links of various media  applications  protocols  hardware,
1 CS 455/555 Intro to Networks and Communications Client/Server Computing and Socket Programming (2.1, ) Michele Weigle Department of Computer Science.
What makes a network good? Ch 2.1: Principles of Network Apps 2: Application Layer1.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Sockets process sends/receives messages to/from its socket
Chapter 3 Transport Layer
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
Lecture 4 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
1 End-user Protocols, Services and QoS. 2 Layering: logical communication application transport network link physical application transport network link.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 1 Omar Meqdadi Department of Computer Science and Software Engineering.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Lecture 23 Application Layer ELEN E6761: Communication Networks Instructor: Javad Ghaderi Slides adapted from “Computer Networking: A Top Down Approach”
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
2: Application Layer 1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
SOME HIGHLIGHTS FROM CHAPTER ONE Introduction 1-1.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
@Yuan Xue CS 283Computer Networks Spring 2011 Instructor: Yuan Xue.
Chapter 7 Application Layer 1 Some of the slides in this chapter are courtesy of Profs. Kurose/Ross and others.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Chapter 3 Transport Layer
Chapter 3 Transport Layer
Day 01 - The Internet.
Principles of Network Applications
Chapter 2 Application Layer
Chapter 3 Transport Layer
Introduction to Networks
Chapter 2 Introduction Application Requirements VS. Transport Services
Chapter 2 Application Layer
Session 3 INST 346 Technologies, Infrastructure and Architecture
Lecture 2 Application Layer
Presentation transcript:

Dr. Philip Cannata 1 Principles of Network Applications

Dr. Philip Cannata 2 Application Layer 2-2 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!)  If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Dr. Philip Cannata 3 Application Layer 2-3 Some network apps web text messaging remote login P2P file sharing multi-user network games streaming stored video (YouTube, Hulu, Netflix) voice over IP (e.g., Skype) real-time video conferencing social networking search …

Dr. Philip Cannata 4 Application Layer 2-4 Creating a network app write programs that: run on (different) end systems communicate over network e.g., web server software communicates with browser software no need to write software for network-core devices network-core devices do not run user applications applications on end systems allows for rapid app development, propagation application transport network data link physical application transport network data link physical application transport network data link physical

Dr. Philip Cannata 5 Application Layer 2-5 Application architectures possible structure of applications: client-server peer-to-peer (P2P)

Dr. Philip Cannata 6 Application Layer 2-6 Client-server architecture server: always-on host permanent IP address data centers for scaling clients: communicate with server may be intermittently connected may have dynamic IP addresses do not communicate directly with each other client/server

Dr. Philip Cannata 7 Application Layer 2-7 P2P architecture no always-on server arbitrary end systems directly communicate peers request service from other peers, provide service in return to other peers self scalability – new peers bring new service capacity, as well as new service demands peers are intermittently connected and change IP addresses complex management peer-peer

Dr. Philip Cannata 8 Application Layer 2-8 Processes communicating process: program running within a host within same host, two processes communicate using inter-process communication (defined by OS) processes in different hosts communicate by exchanging messages client process: process that initiates communication server process: process that waits to be contacted  aside: applications with P2P architectures have client processes & server processes clients, servers

Dr. Philip Cannata 9 Application Layer 2-9 Sockets process sends/receives messages to/from its socket socket analogous to door sending process shoves message out door sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process Internet controlled by OS controlled by app developer transport application physical link network process transport application physical link network process socket

Dr. Philip Cannata 10 Application Layer 2-10 Addressing processes to receive messages, process must have identifier host device has unique 32-bit IP address Q: does IP address of host on which process runs suffice for identifying the process? identifier includes both IP address and port numbers associated with process on host. example port numbers: HTTP server: 80 mail server: 25 to send HTTP message to gaia.cs.umass.edu web server: IP address: port number: 80 more shortly…  A: no, many processes can be running on same host

Dr. Philip Cannata 11 Application Layer 2-11 App-layer protocol defines types of messages exchanged, e.g., request, response message syntax: what fields in messages & how fields are delineated message semantics meaning of information in fields rules for when and how processes send & respond to messages open protocols: defined in RFCs allows for interoperability e.g., HTTP, SMTP proprietary protocols: e.g., Skype

Dr. Philip Cannata 12 Application Layer 2-12 What transport service does an app need? data integrity some apps (e.g., file transfer, web transactions) require 100% reliable data transfer other apps (e.g., audio) can tolerate some loss timing some apps (e.g., Internet telephony, interactive games) require low delay to be “effective” throughput  some apps (e.g., multimedia) require minimum amount of throughput to be “effective”  other apps (“elastic apps”) make use of whatever throughput they get security  encryption, data integrity, …

Dr. Philip Cannata 13 Application Layer 2-13 Transport service requirements: common apps application file transfer Web documents real-time audio/video stored audio/video interactive games text messaging data loss no loss loss-tolerant no loss throughput elastic audio: 5kbps-1Mbps video:10kbps-5Mbps same as above few kbps up elastic time sensitive no yes, 100’s msec yes, few secs yes, 100’s msec yes and no

Dr. Philip Cannata 14 Application Layer 2-14 Internet transport protocols services TCP service: reliable transport between sending and receiving process flow control: sender won’t overwhelm receiver congestion control: throttle sender when network overloaded does not provide: timing, minimum throughput guarantee, security connection-oriented: setup required between client and server processes UDP service: unreliable data transfer between sending and receiving process does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, orconnection setup, Q: why bother? Why is there a UDP?

Dr. Philip Cannata 15 Application Layer 2-15 Internet apps: application, transport protocols application remote terminal access Web file transfer streaming multimedia Internet telephony application layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (e.g., YouTube), RTP [RFC 1889] SIP, RTP, proprietary (e.g., Skype) underlying transport protocol TCP TCP or UDP

Dr. Philip Cannata 16 Securing TCP TCP & UDP  no encryption  cleartext passwds sent into socket traverse Internet in cleartext SSL  provides encrypted TCP connection  data integrity  end-point authentication SSL is at app layer Apps use SSL libraries, which “talk” to TCP SSL socket API  cleartext passwds sent into socket traverse Internet encrypted  See Chapter 7 Application Layer 2-16