Results and Prospects for SNO

Slides:



Advertisements
Similar presentations
Expected Sensitivity of the NO A  Disappearance Analysis Kirk Bays (Caltech) for the NO A Collaboration April 14, 2013 APS DPF Denver Kirk Bays, APS DPF.
Advertisements

Atmospheric Neutrinos Barry Barish Bari, Bologna, Boston, Caltech, Drexel, Indiana, Frascati, Gran Sasso, L’Aquila, Lecce, Michigan, Napoli, Pisa, Roma.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Off-axis Simulations Peter Litchfield, Minnesota  What has been simulated?  Will the experiment work?  Can we choose a technology based on simulations?
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
Queen’s University, Kingston, ON, Canada
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
Experimental Status of Geo-reactor Search with KamLAND Detector
Results and Future of the KamLAND Experiment
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
1 Latest CC analysis developments New selection efficiencies: –Based on C++ reco + PDFs rather than old (Fortran+reco_minos) cuts –Attempt to optimise.
1 CC analysis update New analysis of SK atm. data –Somewhat lower best-fit value of  m 2 –Implications for CC analysis – 5 year plan plots revisited Effect.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Atmospheric Neutrino Oscillations in Soudan 2
Shoei NAKAYAMA (ICRR) for Super-Kamiokande Collaboration December 9, RCCN International Workshop Effect of solar terms to  23 determination in.
1 Super-Kamiokande atmospheric neutrinos Results from SK-I atmospheric neutrino analysis including treatment of systematic errors Sensitivity study based.
Expected Sensitivity of the NO A  Disappearance Analysis Kirk Bays (Caltech) for the NO A Collaboration April 14, 2013 APS DPF Denver Kirk Bays, APS DPF.
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
Neutrino Physics from SNO Aksel Hallin University of Alberta Erice, 2009.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Long Baseline Experiments at Fermilab Maury Goodman.
Solar Neutrino Experiments A Review The CAP'09 Congress Moncton, 7-10 June, 2009 Alain Bellerive On behalf of the SNO Collaboration Carleton University,
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
Solar neutrino results from Super-Kamiokande Satoru Yamada for the Super-Kamiokande collaboration Institute of cosmic ray research, University of Tokyo.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
Search for Sterile Neutrino Oscillations with MiniBooNE
J. Dunmore, University of Oxford NDM03, 10 June 2003 Event Isotropy in the Salt Phase of SNO Jessica Dunmore University of Oxford NDM03, Nara - 10 June.
Beam Extrapolation Fit Peter Litchfield  An update on the method I described at the September meeting  Objective;  To fit all data, nc and cc combined,
N eutrino O scillation W orkshop Conca Specchiulla, September 11 th 2006 Michael Smy UC Irvine Low Energy Challenges in SK-III.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
Solar Neutrino Physics
Recent Results from Super-K Kate Scholberg, Duke University June 7, 2005 Delphi, Greece.
Birth of Neutrino Astrophysics
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Solar Neutrino Results from SNO
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
SNO + SNO+ Steve Biller, Oxford University.  total SSM June 2001 (indirect) April 2002 (direct) (unconstrained CC spectrum) Sept 2003 (salt - unconstrained)
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Results and Prospects with the Sudbury Neutrino Observatory Neutrinos and SNO Phase III Results Low Threshold Analysis Future (maybe) Josh Klein University.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
Mark Dorman UCL/RAL MINOS WITW June 05 An Update on Using QE Events to Estimate the Neutrino Flux and Some Preliminary Data/MC Comparisons for a QE Enriched.
First Results from Phase II of the Sudbury Neutrino Observatory Joshua R. Klein University of Texas at Austin  Solar Neutrinos  Review of Phase I Solar.
30th International Cosmic Ray Conference in Merida, Mexico Michael Smy UC Irvine Low Energy Event Reconstruction and Selection in Super-Kamiokande-III.
The XXII International Conference on Neutrino Physics and Astrophysics in Santa Fe, New Mexico, June 13-19, 2006 The T2K 2KM Water Cherenkov Detector M.
Physics with the ICARUS T1800 detector
Calibration, Simulations, and “Remaining” Issues
A New Measurement of |Vus| from KTeV
Sudbury Neutrino Observatory
Davide Franco for the Borexino Collaboration Milano University & INFN
Presentation transcript:

Results and Prospects for SNO Low Energy Threshold Analysis (LETA) Motivations Analysis Details Results Status of `three-phase’ Analysis Summary and Other Recent Results Josh Klein, for the SNO Collaboration University of Pennsylvania 15 June 2010

Sudbury Neutrino Observatory neutrino reactions on deuterons National Geographic Neutrino-Electron Scattering (ES) Charged Current (CC) Neutral Current (NC) Signal rates determined by statistical fit

Three Phases of SNO Phase I: Just D2O Simple detector configuration, clean measurement Low neutron sensitivity Poor discrimination between neutrons and electrons Phase II: D2O + NaCl Very good neutron sensitivity Better neutron electron separation Phase III: D2O + 3He Proportional Counters Good neutron sensitivity Great neutron/electron separation

Low Energy Threshold Analysis Motivations: ne Statistics CC En=6 MeV ES En=6 MeV Night Day

Low Energy Threshold Analysis Motivations: NC Precision nx (NC) Statistics Breaking NC/CC Covariance Phase I (D2O) NC +74% +68% Phase II (D2O+NaCl) I “Beam Off” Low n capture eff. II “Beam On” High n capture eff.

Low Energy Threshold Analysis Overview Key components: Joint-Phase (I+II) fit for all signals and remaining bkds Reduction of Backgrounds Reduction of Systematic Uncertainties `Float’ Dominant Uncertainties in Fit Needed to rework SNO’s entire analysis chain and simulation, from measurement of charge pedestals to final fit methods. Results: 8B flux measured by NC rates Bin-by-bin electron energy spectrum using CC & ES Parameterized Psurv(En) (New) Two-flavor and three-flavor extraction of mixing params.

Low Energy Threshold Analysis Signal Extraction Fit (Signal PDFs) Monte Carlo Not used (unconstrained in fit) Teff (MeV) cosqsun (R/RAV)3 Isotropy = 1-D projections of 3-D and 4-D PDFS

Low Energy Threshold Analysis Low Energy Backgrounds Cosmic rays < 3/hour Teff>3.5 MeV All events ( but only ~5000 ns) D2O Acrylic Vessel H2O }×{ + PMT 208Tl Acrylic Vessel Surface Neutrons [(α,n) reactions] 214Bi (U, Rn) 208Tl (Th) 24Na (neutron activation of salt) = 12 external bkds + 5 internal bkds (most backgrounds constrained by ex-situ radioassays) For each phase

Low Energy Threshold Analysis Low Energy Backgrounds Kinetic Energy Spectrum New Threshold = 3.5 MeV MC PMT b-gs internal (D2O) external (AV + H2O) NC+CC+ES (Phase II) Old threshold 3 neutrino signals + 17 backgrounds ALL MC!!

Low Energy Threshold Analysis Signal Extraction Fit (3 out of 17(x2) Background PDFs) Monte Carlo Teff (MeV) cosqsun (R/RAV)3 Isotropy = 1-D projections of 3-D and 4-D PDFS

Low Energy Threshold Analysis Background Reduction: Energy Resolution Time Residual (ns) Prompt Timing Cut Late Timing Cut Rayleigh Scatter (used in prior analyses) Using all hits increased hit statistics by ~12% ->6% reduction in resolution ~60% reduction internal bkds `Prompt’ (direct) light easy to model: we know the path traveled

Low Energy Threshold Analysis Background Reduction: New Cuts Only information is PMT charges, times, and hit patterns 4 KS tests of PMT pattern against single Cherenkov e- 1 KS test of PMT times against Cherenkov e- 3 cuts on various isotropy parameters 2 cuts on energy reconstruction uncertainty In-time ratio vs. Nhit to remove misreconstructed events

Low Energy Threshold Analysis Background Reduction: New Cuts `Early’ Charge to cut PMT b-gs Fiducial Volume β γ High charge early in time Note: This would have been impossible if we hadn’t fixed `little’ things like charge pedestals

Low Energy Threshold Analysis Special Case: PMT b-g PDFs Not enough CPUs to simulate sample of events Use data instead PassFail FailPass FailFail PassPass Early charge probability Early charge probability In-time ratio In-time ratio `Bifurcated’ analysis NPF = e1(1-e2)Nb NFP = (1-e1) e2Nb NFF = (1-e1)(1-e2)Nb NPP = e1e2Nb + Ns NPMT= NPP – Ns = NFP * NPF / NFF

Low Energy Threshold Analysis Systematic Uncertainties: Brief Summary 0% 1% 3% 4% 2% n capture Teff scale Fiducial volume I II LETA I LETA II N/A I=D2O II=D2O+Salt b14 (isotropy)

Low Energy Threshold Analysis Systematic Uncertainties And shows clear ES peak, even at 3.5MeV threshold

Low Energy Threshold Analysis Tests of PDF shapes Comparison of 208Tl calibration source data to MC Run near the AV (to model AV 208Tl events) And shows clear ES peak, even at 3.5MeV threshold

Low Energy Threshold Analysis Tests of PDF shapes Distributed Rn Spike And shows clear ES peak, even at 3.5MeV threshold Fit to spike energy spectrum allowing Teff scale to float: shift is 0±0.6%

Low Energy Threshold Analysis Signal Extraction Fit (3 signals+17 backgrounds)x2, and pdfs are multidimensional: ES, CC NC, backgrounds Two distinct methods: 1. Maximum likelihood with binned pdfs:  Manual scan of likelihood space Data helps constrain systematics `human intensive’ 2. Kernel estimation---ML with unbinned pdfs: Further improve syst meast by using data to constrain values of syst pars Allows full `floating’ of systematics, incl. resolutions CPU intensive---use graphics card!

Low Energy Threshold Analysis Fit Results: Binned fit, 1D Projections And shows clear ES peak, even at 3.5MeV threshold

Low Energy Threshold Analysis 8B Flux Results with `unconstrained’ CC spectrum And shows clear ES peak, even at 3.5MeV threshold LETA A LETA B

Low Energy Threshold Analysis `Unconstrained’ CC Electron Spectrum And shows clear ES peak, even at 3.5MeV threshold

Low Energy Threshold Analysis `Unconstrained’ CC Electron Spectrum Flat:2 = 21.52/15 d.o.f. And shows clear ES peak, even at 3.5MeV threshold

Low Energy Threshold Analysis Direct fit to data for Psurv(En) Parameterize distortion to ne spectrum with quadratic Psurv is independent of any flux model: CC and ES rates constrained to be less than NC This helps separate signals and backgrounds: PDFs are now 4D PeeDAY(E) = c0 + c1 (E - 10 MeV) + c2 (E - 10 MeV)2 PeeASYM(E) = a0 + a1 (E - 10 MeV) PeeNIGHT(E) = PeeDAY(E) x [1 + (1/2)*PeeASYM(E)] [1 – (1/2)*PeeASYM(E)] And shows clear ES peak, even at 3.5MeV threshold Note: Fit is now in En, not Teff

Direct Fit for Energy-Dependent Survival Probability Previous global best-fit LMA point: tan212 = 0.468, m2 = 7.59x10-5 eV2 8B = 5.046 +3.8 -3.9 % No distortion, no D/N: 2 = 1.94 / 4 d.o.f. LMA-prediction: 2 = 3.90 / 4 d.o.f. DAY NIGHT ASYM

Comparisons of 8B Spectra J.L. Raaf, Boston University SNO Day Night Borexino arXiv:0808.2868v2

Oscillation Analyses: SNO Only LETA paper 2009: LETA joint-phase fit + Phase III (3He) Best-fit point: tan212=0.437±0.058 m2=1.15x10-7 +0.438-0.18 eV2 (LOW) SNO Collaboration, Phys. Rev C81, 55504

Solar + KamLAND 2-flavor Overlay Brief History KamLAND Collab, Phys.Rev.Lett.90:021802,2003.

Solar + KamLAND 2-flavor Overlay Brief History KamLAND collaboration

Solar + KamLAND 2-flavor Overlay Brief History S. Abe et al. (KamLAND Collaboration), PRL 100, 221803 (2008)

Solar + KamLAND 2-flavor Overlay Brief History LETA paper 2009: LETA joint-phase fit + Phase III + all solar expts + KamLAND

Solar + KamLAND 2-flavor Overlay LETA paper 2009: LETA joint-phase fit + Phase III + all solar expts + KamLAND 2-flavor overlay 2 model

Oscillation Analyses: Solar + KamLAND LETA paper 2009: LETA joint-phase fit + Phase III + all solar expts + KamLAND Best-fit LMA point: tan212 = 0.457 +0.040-0.029 (q12=34.06+1.16-0.84 deg) sin2q12-1/3=-0.02+0.016-0.018 m2 = 7.59x10-5 eV2 (+0.20 -0.21) 2 model 8B uncert = +2.38 -2.95 %

Solar + KamLAND 3-flavor Overlay LETA paper 2009: LETA joint-phase fit + Phase III + all solar expts + KamLAND 3-flavor fit/overlay ->Pointed out by many authors Best-fit: sin213=2.00 +2.09-1.63 x10-2 sin213 < 0.057 (95% C.L.) 3 model

``Three-Phase’’ Analysis Combine LETA+Phase III (3He) in single fit Pulse Shape Analysis to separate 3He signal from background Constrain 3-phase fit using 3He neutron count Output is 8B flux using NC + Psurv(En) +

``Three-Phase’’ Analysis Pulse Shape Analysis Two 2-D Cuts: Hypothesis Test 1 Hypothesis Test 2 Fit to counter pulse energy spectrum used to constrain number of neutrons in full fit See poster by R. Martin, N. Oblath, N. Tolich

``Three-Phase’’ Analysis Pulse Shape Analysis All phases combined with Psurv(En) fit Expected Dm2 improvement Also: expect to bring limits on hep down by x2 See poster by P-L. Drouin, C. Howard, N. Barros

Other SNO Results Low-multiplicity burst search High frequency periodicity search Expected Sensitivity Neutrons and spallation products See poster by A. Anthony, ApJ. 710:540-548 See poster by J. Loach

Summary LETA analysis improved precision on NC by more than factor of 2. Lowest analysis threshold yet achieved by water Cherenkov technique Low E spectrum (still) consistent with no distortion First model-independent fit for solar ne survival probability 3-flavor analysis shows non-zero q13 but consistent with q13=0: Expect further improvement with 3-phase analysis Just a few other things left to do… sin213=2.00 +2.09-1.63 x10-2 sin213 < 0.057 (95% C.L.)

Systematic Uncertainties Position Old New Central runs remove source positioning offsets, MC upgrades reduce shifts Fiducial volume uncertainties (> factor of 3 improvement: Old: Phase I ~ ±3% Phase II ~ ±3% New: Phase I ~ ±1% Phase II ~ ±0.6% Tested with: neutron captures, 8Li, outside-signal-box ns

Systematic Uncertainties Isotropy (b14) MC simulation upgrades provide biggest source of improvement Tests with muon `followers’, Am-Be source, Rn spike b14 Scale uncertainties (factor of 2 improvement): Old: Phase I --- , Phase II = ±0.85% electrons, ±0.48% neutrons New: Phase I ±0.42%, Phase II =±0.24% electrons,+0.38%-0.22% neutrons

8B Flux Result NC = 5.140 +4.0 -3.8 % And shows clear ES peak, even at 3.5MeV threshold J. N. Bahcall, A. M. Serenelli, and S. Basu, AstroPhys. J. 621, L85 (2005)

Monte Carlo Upgrades Calibrations Parameters for simulation measured and tested with sources Laser source (optics/timing) 16N  6.13 MeV ’s Radon `spikes’ Neutrons 6.25 MeV ’s pT  19.8 MeV ’s 8Li  ’s, E<14 MeV Encapsulated U and Th sources

Systematic Uncertainties Energy Scale No correction With correction 16N calibration source 6.13 MeV gs Volume-weighted uncertainties: Old: Phase I = ±1.2% Phase II = ±1.1% New: Phase I = ±0.6% Phase II = ±0.5% (about half Phase-correlated) Tested with: Independent 16N data, n capture events, Rn `spike’ events…

New Cuts Summary ~80% reduction in external bkds

Direct Fit for Energy-Dependent Survival Probability Previous global best-fit LMA point: tan212 = 0.468, m2 = 7.59x10-5 eV2 NIGHT DAY And shows clear ES peak, even at 3.5MeV threshold

Survival Probability DAY NIGHT And shows clear ES peak, even at 3.5MeV threshold NIGHT

Survival Probability DAY NIGHT And shows clear ES peak, even at 3.5MeV threshold NIGHT

Survival Probability DAY NIGHT And shows clear ES peak, even at 3.5MeV threshold NIGHT

Survival Probability DAY NIGHT And shows clear ES peak, even at 3.5MeV threshold NIGHT

Oscillation Analyses: Global Solar LETA paper 2009: LETA joint-phase fit + Phase III + all solar expts Best-fit LMA point: tan212 = 0.457 (+0.038 -0.041) m2 = 5.89x10-5 eV2 (+2.13 -2.16) And shows clear ES peak, even at 3.5MeV threshold