Optoelectronics & Microsystems Lab Politecnico di Milano, Dip. Elettronica e Informazione, Milano, Italy.

Slides:



Advertisements
Similar presentations
Politecnico di Milano, Dip. Elettronica e Informazione, Milano, Italy
Advertisements

Optoelectronics & Microsystems Lab
S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Bias: well ABOVE breakdown Geiger-mode: its a TRIGGER device!!
New developments of Silicon Photomultipliers (for PET systems)
Liverpool Group presentation 22/07/2009
10 March 2004Erika Garutti - KEK, Japan1 Development of an Hadronic Tile Calorimeter for TESLA New calorimeter concept for linear collider detector The.
1 Electronics Simulation in the Photon Transport Monte Carlo Preamp model Receiver/discriminator circuit CAFÉ driver circuit model Examples Summary January.
Study of Silicon Photomultipliers Joëlle Barral, MPI, 25th June 2004.
Chapter 9. PN-junction diodes: Applications
Geiger Counters. Higher Voltage As the voltage increases in a gas detector the ions collected increases. The proportional region ends. –Streamer mode.
A photon-counting detector for exoplanet missions Don Figer 1, Joong Lee 1, Brandon Hanold 1, Brian Aull 2, Jim Gregory 2, Dan Schuette 2 1 Center for.
CMOS Comparator Data Converters Comparator Professor Y. Chiu
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Innovation in Single-Photon Detection GPD Modules for Scintillating Fiber Readouts Stefan Vasile
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Optical Interconnects Speeding Up Computing Matt Webb PICTURE HERE.
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC
Characterization of a Geiger-mode Avalanche Photodiode a Rochester Institute of Technology, Department of Electrical and Microelectronic Engineering; b.
SINGLE PHOTON AVALANCHE DIODE (SPAD): FROM SINGLE ELEMENT TO ARRAY (SPADA) (SWORD) G. Bonanno, M. Belluso, F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D.
Semiconductor Optical Single-Photon Diode
Near-infrared (NIR) Single Photon Counting Detectors (SPADs)
© Fraunhofer IMS Version 6.1. Image Sensor Design and Technology Development at Fraunhofer IMS Dr. Sascha Weyers.
Optical Interconnects Speeding Up Computing Matt Webb PICTURE HERE.
Ivan Rech Politecnico di Milano MICROELECTRONIC PHOTOSENSORS FOR GENETIC DIAGNOSTIC MICROSYSTEMS GE 2003, June 13, 2003 MICROELECTRONIC PHOTOSENSORS FOR.
A CMOS circuit for Silicon Drift Detectors readout
Fiber Optic Receiver A fiber optic receiver is an electro-optic device that accepts optical signals from an optical fiber and converts them into electrical.
Solid-State Photomultiplier for the PRIMEX PbWO4 Calorimeter
OPTICAL DETECTORS IN FIBER OPTIC RECEIVERS.
Characterization of Silicon Photodetectors (Avalanche Photodiodes in Geiger Mode) S. Cihangir, G. Mavromanolakis, A. Para. N.Saoulidou.
3D Micromanufacturing Lab. School of Mechatronics Gwangju Institute of Science and Technology 3D Micromanufacturing Lab. School of Mechatronics Gwangju.
A High-speed Adaptively-biased Current- to-current Front-end for SSPM Arrays Bob Zheng, Jean-Pierre Walder, Henrik von der Lippe, William Moses, Martin.
Introduction on SiPM devices
Photon detection Visible or near-visible wavelengths
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
PH4705 & ET4305: Digital Sensors
Salvatore Tudisco The new generation of SPAD Single Photon Avalanche Diodes arrays I Workshop on Photon Detection - Perugia 2007 LNS LNS.
10/26/20151 Observational Astrophysics I Astronomical detectors Kitchin pp
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Creating a System to Test Single Photon Avalanche Diodes Alex Chan Young Scholars Program Farragut High School July, 16,2014 Knoxville, Tennessee.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
Midterm 2 performance Full points is 48. Average is
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
10 th Pisa Meeting on Advanced Detectors, Isola d’Elba, May 2006 Development of the first prototypes of Silicon Photomultiplier at ITC-irst N. Dinu, R.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
D. Renker, PSI - Vertex 2006 Overview of Developments of Silicon Photomultiplier Detectors Dieter Renker Dieter Renker.
Optical Receivers Theory and Operation
Solid State Detectors - Physics
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
SiPM from ST-Microelectronics Nepomuk Otte & Hector Romo Santa Cruz Institute for Particle Physics University of California, Santa Cruz
1 Rome, 14 October 2008 Joao Varela LIP, Lisbon PET-MRI Project in FP7 LIP Motivations and Proposals.
R&D of Calorimeter using Strip/Block Scintillator with SiPM E.P. Jacosalem, S. Iba, N. Nakajima, H. Ono, A.L. Sanchez & H. Miyata Niigata University ILC.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
SPIE Defense and Commercial Sensing 2016, Baltimore, Maryland, USA, Apr 21, 2016 Advanced active quenching circuits for single-photon avalanche photodiodes.
Study of Geiger Avalanche Photo Diode applications to pixel tracking detectors Barcelona Main Goal The use of std CMOS tech. APD's in Geiger mode (that.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Topic Report Photodetector and CCD
D. Renker, PSI G-APD Workshop GSI, PAUL SCHERRER INSTITUT Problems in the Development of Geiger- mode Avalanche Photodiodes Dieter Renker Paul Scherrer.
25 um pitch 100 um pitch 50 um pitch 25 um pitch Individual SPADs 1 mm APD Nominal “standard” Devices: 25 um pitch ~50% fill factor AR coated > 20% DE?
A Temperature Compensated Power Supply for Silicon-Photomultiplier
Development of Multi-Pixel Photon Counters (1)
Activities at SMI/Vienna in testing the performance of SiPMs
Introduction to the physics of the SiPM
Progress report on SiPM development and its applications
Frontier Detectors for Frontier Physics
Geiger-mode Avalanche Photodiodes
V. Semiconductor Photodetectors (PD)
(Status in) Silicon Photomultiplier developments
Presentation transcript:

Optoelectronics & Microsystems Lab Politecnico di Milano, Dip. Elettronica e Informazione, Milano, Italy

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab STAFF COVA, S. Full Professor GHIONI, M. Full Professor ZAPPA, F. Associate Professor GIUDICE, A. Post-Doc Research Associate RECH, I. Post-Doc Research Associate LABANCA, I. Research Associate GALLIVANONI, A.Research Associate TISA, S.Ph.D. Student RESTELLI, A. Ph.D. Student TOSI, A.Ph.D. Student GULINATTI, A. Ph.D. Student

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Core Know-How Microelectronic Detectors and Circuits Measurement Techniques and Instrumentation for detecting and measuring optical signals with ultra-high sensitivity and picosecond resolution

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Bias: well ABOVE breakdown Geiger-mode: its a TRIGGER device!! Gain: meaningless... or infinite !! Bias: slightly BELOW breakdown Linear-mode: its an AMPLIFIER Gain: limited < 1000 A valanche P hoto D iode S ingle- P hoton A valanche D iode APD SPAD

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Thin Si SPAD Thick Si SPAD Planar structure typical active region: 20 m diameter 1 m thick Reach-Trough structure typical active region: 200 m diameter 30 m thick

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Thin Si SPADs Thick Si SPADs Good QE and low noise Picosecond timing Low voltage : 15 to 40V Low power : cooling not necessary Standard Si substrate Planar fabrication process COMPATIBLE with array detector and ICs (integrated circuits) Robust and rugged Low-cost NO COMMERCIAL SOURCE TODAY Very good QE and low noise Sub-nanosecond timing High voltage : 300 to 400V High dissipation : Peltier cooler required Ultra-pure high-resistivity Si substrate Dedicated fabrication process NOT COMPATIBLE with array detector and ICs Delicate and degradable Very expensive SINGLE COMMERCIAL SOURCE

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Passive quenching is simple... Current Pulses Diode Voltage … but suffers from long, not well defined deadtime low max counting rate < 100kc/s photon timing spread et al

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Activequenching…. Active quenching…....provides: short, well-defined deadtime high counting rate > 1 Mc/s good photon timing standard logic output Output Pulses P.Antognetti, S.Cova, A.Longoni IEEE Ispra Nucl.El.Symp. (1975) Euratom Publ. EUR 537e

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Earlier modules in the 80s Compact modules in the 90s Integrated AQC today AQC evolution

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab iAQC - Integrated Active Quenching Circuit F.Zappa, S.Cova, M.Ghioni, Monolithic circuit of active quenching and active reset for avalanche photodiodes, US Patent 6,541,752 B2, date April 1,2003 (priority date March 9, 2000); European patent application n , fil. March 6, F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits, 38, (2003). Input sensing and quenching stage

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab iAQC - Integrated Active Quenching Circuit CMOS design +V HIGH +5V IN GATE GND WIDTH OUT

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab iAQC - Integrated Active Quenching Circuit Practical advantages Miniaturization mini-module detectors Low-Power Consumption portable modules Ruggedness and Reliability Plus improved performance Reduced Capacitance Improved Photon Timing Reduced Avalanche charge Reduced Afterpulsing Reduced Photoemission reduced crosstalk in arrays

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab QE comparison

S. Cova et al., 2004 POLIMI - Politecnico di Milano, DEI Optoelectronics & Microsystems Lab Photon Timing comparison Planar thin Si-SPAD PerkinElmer SPCM (SLIK TM diode)