Objective Apply inequalities in two triangles..

Slides:



Advertisements
Similar presentations
Example 1A: Compare mBAC and mDAC. Compare the side lengths in ∆ABC and ∆ADC. By the Converse of the Hinge Theorem, mBAC > mDAC. AB = AD AC = AC BC.
Advertisements

Lesson 5 – 6 Inequalities in Two Triangles
Chapter 5 Review ISHS-Mrs. Bonn Geometry-Semester 1.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Objective Prove and apply theorems about perpendicular lines.
Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and slope of the segment (2, 8) and (–4,
Perpendicular bisector and angle bisector
5-2 Use Perpendicular Bisectors Warm Up Lesson Presentation
5-6 Inequalities in Two Triangles
Jeopardy Angle Side Relationships Converse of Hinge Theorem Misc. $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 Final Jeopardy Triangle Inequality.
Inequalities in Two Triangles
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
A B C 12 We know ∠B = ∠C S TU 1214 We could write a proof to show ∠T ≠∠U *We could also prove that m ∠T > m ∠U, BUT theorem 1 tells us that!
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Objectives Prove and apply theorems about perpendicular bisectors.
Holt Geometry 3-6 Perpendicular Lines 3-6 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Holt McDougal Geometry 5-1 Perpendicular and Angle Bisectors 5-1 Perpendicular and Angle Bisectors Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Pearson Unit 1 Topic 5: Relationships Within Triangles 5-8: Inequalities in Two Triangles Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
5-6 inequalities in two triangles
Holt Geometry 5-6 Inequalities in Two Triangles 5-6 Inequalities in Two Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
 Objectives:  Students will apply proportions with a triangle or parallel lines.  Why?, So you can use perspective drawings, as seen in EX 28  Mastery.
Isosceles and Equilateral Triangles
Inequalities in Two Triangles
Inequalities in Two Triangles
Unit 4: Triangle congruence
Holt McDougal Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Inequalities in Two Triangles
Relationships within Triangles
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Perpendicular and Angle Bisectors
Objective Apply inequalities in two triangles..
Inequalities in Two Triangles
Inequalities in Two Triangles
BASIC GEOMETRY Section 5.6: Inequalities in 2 Triangles
Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Do Now 1. Find the value of n.
Warm Up Construct each of the following. 1. A perpendicular bisector.
Class Greeting.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Q: Which triangles are the coldest? A: Ice-sosceles triangles.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Inequalities in Two Triangles
Inequalities in Two Triangles
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Inequalities in Two Triangles
Inequalities in Two Triangles
OBJ: SWBAT prove and apply theorems about perpendicular bisectors.
Inequalities in Two Triangles
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Objective Apply inequalities in two triangles..
Inequalities in Two Triangles
Class Greeting.
Inequalities in Two Triangles
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Inequalities in Two Triangles
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Objectives Prove and apply theorems about perpendicular bisectors.
Warm Up 1. Write the angles in order from smallest to largest.
Perpendicular and Angle Bisectors
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Learning Target I will apply inequalities in two triangles.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5.6 Indirect Proof and Inequalities in Two Triangles
Vocabulary Hinge.
Learning Targets I will prove and apply theorems about perpendicular bisectors. I will prove and apply theorems about angle bisectors.
Advanced Geometry Section 2.6 Multiplication and Division Properties
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Presentation transcript:

Objective Apply inequalities in two triangles.

Example 1A: Using the Hinge Theorem and Its Converse Compare mBAC and mDAC. Compare the side lengths in ∆ABC and ∆ADC. AB = AD AC = AC BC > DC By the Converse of the Hinge Theorem, mBAC > mDAC.

Example 1B: Using the Hinge Theorem and Its Converse Compare EF and FG. Compare the sides and angles in ∆EFH angles in ∆GFH. mGHF = 180° – 82° = 98° EH = GH FH = FH mEHF > mGHF By the Hinge Theorem, EF < GF.

Example 1C: Using the Hinge Theorem and Its Converse Find the range of values for k. Step 1 Compare the side lengths in ∆MLN and ∆PLN. LN = LN LM = LP MN > PN By the Converse of the Hinge Theorem, mMLN > mPLN. 5k – 12 < 38 Substitute the given values. k < 10 Add 12 to both sides and divide by 5.

Example 1C Continued Step 2 Since PLN is in a triangle, mPLN > 0°. 5k – 12 > 0 Substitute the given values. k < 2.4 Add 12 to both sides and divide by 5. Step 3 Combine the two inequalities. The range of values for k is 2.4 < k < 10.

Check It Out! Example 1a Compare mEGH and mEGF. Compare the side lengths in ∆EGH and ∆EGF. FG = HG EG = EG EF > EH By the Converse of the Hinge Theorem, mEGH < mEGF.

Check It Out! Example 1b Compare BC and AB. Compare the side lengths in ∆ABD and ∆CBD. AD = DC BD = BD mADB > mBDC. By the Hinge Theorem, BC > AB.

Example 2: Travel Application John and Luke leave school at the same time. John rides his bike 3 blocks west and then 4 blocks north. Luke rides 4 blocks east and then 3 blocks at a bearing of N 10º E. Who is farther from school? Explain.

Example 2 Continued The distances of 3 blocks and 4 blocks are the same in both triangles. The angle formed by John’s route (90º) is smaller than the angle formed by Luke’s route (100º). So Luke is farther from school than John by the Hinge Theorem.

Check It Out! Example 2 When the swing ride is at full speed, the chairs are farthest from the base of the swing tower. What can you conclude about the angles of the swings at full speed versus low speed? Explain. The  of the swing at full speed is greater than the  at low speed because the length of the triangle on the opposite side is the greatest at full swing.

Example 3: Proving Triangle Relationships Write a two-column proof. Given: Prove: AB > CB Proof: Statements Reasons 1. Given 2. Reflex. Prop. of  3. Hinge Thm.

Check It Out! Example 3a Write a two-column proof. Given: C is the midpoint of BD. m1 = m2 m3 > m4 Prove: AB > ED

Statements Reasons Proof: 1. C is the mdpt. of BD m3 > m4, 1. Given 2. Def. of Midpoint 3. 1  2 3. Def. of  s 4. Conv. of Isoc. ∆ Thm. 5. AB > ED 5. Hinge Thm.

Check It Out! Example 3b Write a two-column proof. Given: SRT  STR TU > RU Prove: mTSU > mRSU Statements Reasons 1. SRT  STR TU > RU 1. Given 2. Conv. of Isoc. Δ Thm. 3. Reflex. Prop. of  4. mTSU > mRSU 4. Conv. of Hinge Thm.