CMU SCS Large Graph Mining – Patterns, Tools and Cascade analysis Christos Faloutsos CMU.

Slides:



Advertisements
Similar presentations
Yasuko Matsubara (Kyoto University),
Advertisements

CMU SCS Large Graph Mining - Patterns, tools and cascade analysis Christos Faloutsos CMU.
CMU SCS Identifying on-line Fraudsters: Anomaly Detection Using Network Effects Christos Faloutsos CMU.
1 Dynamics of Real-world Networks Jure Leskovec Machine Learning Department Carnegie Mellon University
CMU SCS Large Graph Mining - Patterns, Explanations and Cascade Analysis Christos Faloutsos CMU.
CMU SCS I2.2 Large Scale Information Network Processing INARC 1 Overview Goal: scalable algorithms to find patterns and anomalies on graphs 1. Mining Large.
FUNNEL: Automatic Mining of Spatially Coevolving Epidemics Yasuko Matsubara, Yasushi Sakurai (Kumamoto University) Willem G. van Panhuis (University of.
School of Computer Science Carnegie Mellon University National Taiwan University of Science & Technology Unifying Guilt-by-Association Approaches: Theorems.
CMU SCS : Multimedia Databases and Data Mining Lecture #21: Tensor decompositions C. Faloutsos.
CMU SCS Mining Billion-Node Graphs - Patterns and Algorithms Christos Faloutsos CMU.
CMU SCS : Multimedia Databases and Data Mining Lecture #26: Graph mining - patterns Christos Faloutsos.
CMU SCS Mining Billion-Node Graphs - Patterns and Algorithms Christos Faloutsos CMU.
CMU SCS Large Graph Mining - Patterns, Tools and Cascade Analysis Christos Faloutsos CMU.
CMU SCS C. Faloutsos (CMU)#1 Large Graph Algorithms Christos Faloutsos CMU McGlohon, Mary Prakash, Aditya Tong, Hanghang Tsourakakis, Babis Akoglu, Leman.
CMU SCS Mining Billion-node Graphs Christos Faloutsos CMU.
Weighted Graphs and Disconnected Components Patterns and a Generator Mary McGlohon, Leman Akoglu, Christos Faloutsos Carnegie Mellon University School.
Social Networks and Graph Mining Christos Faloutsos CMU - MLD.
WindMine: Fast and Effective Mining of Web-click Sequences SDM 2011Y. Sakurai et al.1 Yasushi Sakurai (NTT) Lei Li (Carnegie Mellon Univ.) Yasuko Matsubara.
CMU SCS Mining Large Graphs Christos Faloutsos CMU.
CMU SCS APWeb 07(c) 2007, C. Faloutsos 1 Copyright notice Copyright (c) 2007, Christos Faloutsos - all rights preserved. Permission to use all or some.
CMU SCS Large Graph Mining Christos Faloutsos CMU.
CMU SCS Graph mining: Patterns, Generators and Tools Christos Faloutsos CMU.
SCS CMU Proximity Tracking on Time- Evolving Bipartite Graphs Speaker: Hanghang Tong Joint Work with Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos.
CMU SCS Bio-informatics, Graph and Stream mining Christos Faloutsos CMU.
CMU SCS Graph and stream mining Christos Faloutsos CMU.
CMU SCS Graph Mining and Influence Propagation Christos Faloutsos CMU.
CMU SCS Yahoo/Hadoop, 2008#1 Peta-Graph Mining Christos Faloutsos Prakash, Aditya Shringarpure, Suyash Tsourakakis, Charalampos Appel, Ana Chau, Polo Leskovec,
CMU SCS Graph Mining: Laws, Generators and Tools Christos Faloutsos CMU.
CMU SCS Large Graph Mining – Patterns, Tools and Cascade analysis Christos Faloutsos CMU.
CMU SCS : Multimedia Databases and Data Mining Lecture #28: Graph mining - patterns Christos Faloutsos.
CMU SCS Data Mining in Streams and Graphs Christos Faloutsos CMU.
CMU SCS Large Graph Mining - Patterns, Tools and Cascade Analysis Christos Faloutsos CMU.
CMU SCS Big (graph) data analytics Christos Faloutsos CMU.
CMU SCS Graph Mining: Laws, Generators and Tools Christos Faloutsos CMU.
Weighted Graphs and Disconnected Components Patterns and a Generator IDB Lab 현근수 In KDD 08. Mary McGlohon, Leman Akoglu, Christos Faloutsos.
CMU SCS Large Graph Mining Christos Faloutsos CMU.
CMU SCS KDD'09Faloutsos, Miller, Tsourakakis P0-1 Large Graph Mining: Power Tools and a Practitioner’s guide Christos Faloutsos Gary Miller Charalampos.
Jure Leskovec PhD: Machine Learning Department, CMU Now: Computer Science Department, Stanford University.
CMU SCS Mining Billion-node Graphs: Patterns, Generators and Tools Christos Faloutsos CMU.
CMU SCS Large Graph Mining Christos Faloutsos CMU.
CMU SCS U Kang (CMU) 1KDD 2012 GigaTensor: Scaling Tensor Analysis Up By 100 Times – Algorithms and Discoveries U Kang Christos Faloutsos School of Computer.
Jure Leskovec Computer Science Department Cornell University / Stanford University Joint work with: Jon Kleinberg (Cornell), Christos.
CMU SCS Mining Billion-Node Graphs Christos Faloutsos CMU.
CMU SCS Mining Billion-Node Graphs: Patterns and Algorithms Christos Faloutsos CMU.
CMU SCS Graph Mining - surprising patterns in real graphs Christos Faloutsos CMU.
CMU SCS Big (graph) data analytics Christos Faloutsos CMU.
CMU SCS Mining Billion Node Graphs Christos Faloutsos CMU.
CMU SCS Large Graph Mining Christos Faloutsos CMU.
CMU SCS Mining Large Graphs: Fraud Detection, and Algorithms Christos Faloutsos CMU.
CMU SCS KDD '09Faloutsos, Miller, Tsourakakis P5-1 Large Graph Mining: Power Tools and a Practitioner’s guide Task 5: Graphs over time & tensors Faloutsos,
ParCube: Sparse Parallelizable Tensor Decompositions
CMU SCS Graph Mining: patterns and tools for static and time-evolving graphs Christos Faloutsos CMU.
RTM: Laws and a Recursive Generator for Weighted Time-Evolving Graphs Leman Akoglu, Mary McGlohon, Christos Faloutsos Carnegie Mellon University School.
CMU SCS Graph Mining Christos Faloutsos CMU. CMU SCS iCAST, Jan. 09C. Faloutsos 2 Thank you! Prof. Hsing-Kuo Kenneth Pao Eric, Morgan, Ian, Teenet.
CMU SCS Patterns, Anomalies, and Fraud Detection in Large Graphs Christos Faloutsos CMU.
CMU SCS Mining Large Social Networks: Patterns and Anomalies Christos Faloutsos CMU.
CMU SCS Graph Mining: Laws, Generators and Tools Christos Faloutsos CMU.
CMU SCS Graph Mining: Laws, Generators and Tools Christos Faloutsos CMU.
CMU SCS KDD'09Faloutsos, Miller, Tsourakakis P9-1 Large Graph Mining: Power Tools and a Practitioner’s guide Christos Faloutsos Gary Miller Charalampos.
CMU SCS Panel: Social Networks Christos Faloutsos CMU.
CMU SCS KDD '09Faloutsos, Miller, Tsourakakis P8-1 Large Graph Mining: Power Tools and a Practitioner’s guide Task 8: hadoop and Tera/Peta byte graphs.
Large Graph Mining: Power Tools and a Practitioner’s guide
PEGASUS: A PETA-SCALE GRAPH MINING SYSTEM
NetMine: Mining Tools for Large Graphs
Part 1: Graph Mining – patterns
15-826: Multimedia Databases and Data Mining
Graph and Tensor Mining for fun and profit
Graph and Tensor Mining for fun and profit
Algorithms for Large Graph Mining
Large Graph Mining: Power Tools and a Practitioner’s guide
Presentation transcript:

CMU SCS Large Graph Mining – Patterns, Tools and Cascade analysis Christos Faloutsos CMU

CMU SCS Thank you! Brian Gallagher Jan Winfield LLNL, Jan 2013C. Faloutsos (CMU) 2

CMU SCS C. Faloutsos (CMU) 3 Roadmap Introduction – Motivation –Why ‘big data’ –Why (big) graphs? Problem#1: Patterns in graphs Problem#2: Tools Problem#3: Scalability Conclusions LLNL, Jan 2013

CMU SCS Why ‘big data’ Why? What is the problem definition? What are the major research challenges? LLNL, Jan 2013C. Faloutsos (CMU) 4

CMU SCS Main message: Big data: often > experts ‘Super Crunchers’ Why Thinking-By-Numbers is the New Way To Be Smart by Ian Ayres, 2008 Google won the machine translation competition esults_release_ _v3.htmlhttp:// esults_release_ _v3.html LLNL, Jan 2013C. Faloutsos (CMU) 5

CMU SCS Problem definition – big picture LLNL, Jan 2013C. Faloutsos (CMU) 6 Tera/Peta-byte data AnalyticsInsights, outliers

CMU SCS Problem definition – big picture LLNL, Jan 2013C. Faloutsos (CMU) 7 Tera/Peta-byte data AnalyticsInsights, outliers Main emphasis in this talk

CMU SCS Problem definition – big picture LLNL, Jan 2013C. Faloutsos (CMU) 8 Tera/Peta-byte data (my personal) rules of thumb: if data fits in memory -> R, matlab, scipy single disk -> RDBMS (sqlite3, mysql, postgres) multiple (< ) disks: parallel RDBMS (Vertica, TeraData) multiple (>1000) disks: hadoop, pig

CMU SCS C. Faloutsos (CMU) 9 (Free) Resource for graphs Open source system for mining huge graphs: PEGASUS project (PEta GrAph mining System) Apache license for s/w code and papers LLNL, Jan 2013

CMU SCS Research challenges The usual ones from data mining –Data cleansing –Feature engineering –… PLUS –Scalability ( < O(N**2)) –Real data *disobey* textbook assumptions (uniformity, independence, Gaussian, Poisson) with huge performance implications LLNL, Jan 2013C. Faloutsos (CMU) 10

CMU SCS C. Faloutsos (CMU) 11 Roadmap Introduction – Motivation –Why ‘big data’ –Why (big) graphs? Problem#1: Patterns in graphs Problem#2: Tools Problem#3: Scalability Conclusions LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 12 Graphs - why should we care? Internet Map [lumeta.com] Food Web [Martinez ’91] >$10B revenue >0.5B users LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 13 Graphs - why should we care? IR: bi-partite graphs (doc-terms) web: hyper-text graph... and more: D1D1 DNDN T1T1 TMTM... LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 14 Graphs - why should we care? ‘viral’ marketing web-log (‘blog’) news propagation computer network security: /IP traffic and anomaly detection.... Subject-verb-object -> graph Many-to-many db relationship -> graph LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 15 Outline Introduction – Motivation Problem#1: Patterns in graphs –Static graphs –Weighted graphs –Time evolving graphs Problem#2: Tools Problem#3: Scalability Conclusions LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 16 Problem #1 - network and graph mining What does the Internet look like? What does FaceBook look like? What is ‘normal’/‘abnormal’? which patterns/laws hold? LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 17 Problem #1 - network and graph mining What does the Internet look like? What does FaceBook look like? What is ‘normal’/‘abnormal’? which patterns/laws hold? –To spot anomalies (rarities), we have to discover patterns LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 18 Problem #1 - network and graph mining What does the Internet look like? What does FaceBook look like? What is ‘normal’/‘abnormal’? which patterns/laws hold? –To spot anomalies (rarities), we have to discover patterns –Large datasets reveal patterns/anomalies that may be invisible otherwise… LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 19 Graph mining Are real graphs random? LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 20 Laws and patterns Are real graphs random? A: NO!! –Diameter –in- and out- degree distributions –other (surprising) patterns So, let’s look at the data LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 21 Solution# S.1 Power law in the degree distribution [SIGCOMM99] log(rank) log(degree) internet domains att.com ibm.com LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 22 Solution# S.1 Power law in the degree distribution [SIGCOMM99] log(rank) log(degree) internet domains att.com ibm.com LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 23 Solution# S.2: Eigen Exponent E A2: power law in the eigenvalues of the adjacency matrix E = Exponent = slope Eigenvalue Rank of decreasing eigenvalue May 2001 LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 24 Solution# S.2: Eigen Exponent E [Mihail, Papadimitriou ’02]: slope is ½ of rank exponent E = Exponent = slope Eigenvalue Rank of decreasing eigenvalue May 2001 LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 25 But: How about graphs from other domains? LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 26 More power laws: web hit counts [w/ A. Montgomery] Web Site Traffic in-degree (log scale) Count (log scale) Zipf users sites ``ebay’’ LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 27 epinions.com who-trusts-whom [Richardson + Domingos, KDD 2001] (out) degree count trusts-2000-people user LLNL, Jan 2013

CMU SCS And numerous more # of sexual contacts Income [Pareto] –’80-20 distribution’ Duration of downloads [Bestavros+] Duration of UNIX jobs (‘mice and elephants’) Size of files of a user … ‘Black swans’ LLNL, Jan 2013C. Faloutsos (CMU) 28

CMU SCS C. Faloutsos (CMU) 29 Roadmap Introduction – Motivation Problem#1: Patterns in graphs –Static graphs degree, diameter, eigen, triangles cliques –Weighted graphs –Time evolving graphs Problem#2: Tools LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 30 Solution# S.3: Triangle ‘Laws’ Real social networks have a lot of triangles LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 31 Solution# S.3: Triangle ‘Laws’ Real social networks have a lot of triangles –Friends of friends are friends Any patterns? LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 32 Triangle Law: #S.3 [Tsourakakis ICDM 2008] ASNHEP-TH Epinions X-axis: # of participating triangles Y: count (~ pdf) LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 33 Triangle Law: #S.3 [Tsourakakis ICDM 2008] ASNHEP-TH Epinions LLNL, Jan 2013 X-axis: # of participating triangles Y: count (~ pdf)

CMU SCS C. Faloutsos (CMU) 34 Triangle Law: #S.4 [Tsourakakis ICDM 2008] SNReuters Epinions X-axis: degree Y-axis: mean # triangles n friends -> ~n 1.6 triangles LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 35 Triangle Law: Computations [Tsourakakis ICDM 2008] But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly? details LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 36 Triangle Law: Computations [Tsourakakis ICDM 2008] But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly? A: Yes! #triangles = 1/6 Sum ( i 3 ) (and, because of skewness (S2), we only need the top few eigenvalues! details LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 37 Triangle Law: Computations [Tsourakakis ICDM 2008] 1000x+ speed-up, >90% accuracy details LLNL, Jan 2013

CMU SCS Triangle counting for large graphs? Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD’11] 38 LLNL, Jan C. Faloutsos (CMU) ?? ?

CMU SCS Triangle counting for large graphs? Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD’11] 39 LLNL, Jan C. Faloutsos (CMU)

CMU SCS Triangle counting for large graphs? Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD’11] 40 LLNL, Jan C. Faloutsos (CMU)

CMU SCS Triangle counting for large graphs? Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD’11] 41 LLNL, Jan C. Faloutsos (CMU)

CMU SCS C. Faloutsos (CMU) 42 Roadmap Introduction – Motivation Problem#1: Patterns in graphs –Static graphs degree, diameter, eigen, triangles cliques –Weighted graphs –Time evolving graphs Problem#2: Tools LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 43 Observations on weighted graphs? A: yes - even more ‘laws’! M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008 LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 44 Observation W.1: Fortification Q: How do the weights of nodes relate to degree? LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 45 Observation W.1: Fortification More donors, more $ ? $10 $5 LLNL, Jan 2013 ‘Reagan’ ‘Clinton’ $7

CMU SCS Edges (# donors) In-weights ($) C. Faloutsos (CMU) 46 Observation W.1: fortification: Snapshot Power Law Weight: super-linear on in-degree exponent ‘iw’: 1.01 < iw < 1.26 Orgs-Candidates e.g. John Kerry, $10M received, from 1K donors More donors, even more $ $10 $5 LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 47 Roadmap Introduction – Motivation Problem#1: Patterns in graphs –Static graphs –Weighted graphs –Time evolving graphs Problem#2: Tools … LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 48 Problem: Time evolution with Jure Leskovec (CMU -> Stanford) and Jon Kleinberg (Cornell – CMU) LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 49 T.1 Evolution of the Diameter Prior work on Power Law graphs hints at slowly growing diameter: –diameter ~ O(log N) –diameter ~ O(log log N) What is happening in real data? LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 50 T.1 Evolution of the Diameter Prior work on Power Law graphs hints at slowly growing diameter: –diameter ~ O(log N) –diameter ~ O(log log N) What is happening in real data? Diameter shrinks over time LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 51 T.1 Diameter – “Patents” Patent citation network 25 years of –2.9 M nodes –16.5 M edges time [years] diameter LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 52 T.2 Temporal Evolution of the Graphs N(t) … nodes at time t E(t) … edges at time t Suppose that N(t+1) = 2 * N(t) Q: what is your guess for E(t+1) =? 2 * E(t) LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 53 T.2 Temporal Evolution of the Graphs N(t) … nodes at time t E(t) … edges at time t Suppose that N(t+1) = 2 * N(t) Q: what is your guess for E(t+1) =? 2 * E(t) A: over-doubled! –But obeying the ``Densification Power Law’’ LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 54 T.2 Densification – Patent Citations Citations among patents –2.9 M nodes –16.5 M edges Each year is a datapoint N(t) E(t) 1.66 LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 55 Roadmap Introduction – Motivation Problem#1: Patterns in graphs –Static graphs –Weighted graphs –Time evolving graphs Problem#2: Tools … LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 56 T.3 : popularity over time Post popularity drops-off – exponentially? lag: days after post # in links 1 + lag LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 57 T.3 : popularity over time Post popularity drops-off – exponentially? POWER LAW! Exponent? # in links (log) days after post (log) LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 58 T.3 : popularity over time Post popularity drops-off – exponentially? POWER LAW! Exponent? -1.6 close to -1.5: Barabasi’s stack model and like the zero-crossings of a random walk # in links (log) -1.6 days after post (log) LLNL, Jan 2013

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) slope J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005). [PDF]PDF Response time (log) Prob(RT > x) (log)

CMU SCS C. Faloutsos (CMU) 60 Roadmap Introduction – Motivation Problem#1: Patterns in graphs Problem#2: Tools –Belief Propagation –Tensors –Spike analysis Problem#3: Scalability Conclusions LLNL, Jan 2013

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) 61 E-bay Fraud detection w/ Polo Chau & Shashank Pandit, CMU [www’07]

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) 62 E-bay Fraud detection

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) 63 E-bay Fraud detection

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) 64 E-bay Fraud detection - NetProbe

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) 65 E-bay Fraud detection - NetProbe FAH F99% A H49% Compatibility matrix heterophily

CMU SCS C. Faloutsos (CMU) 66 Roadmap Introduction – Motivation Problem#1: Patterns in graphs Problem#2: Tools –Belief Propagation –Tensors –Spike analysis Problem#3: Scalability Conclusions LLNL, Jan 2013

CMU SCS GigaTensor: Scaling Tensor Analysis Up By 100 Times – Algorithms and Discoveries U Kang Christos Faloutsos KDD’12 Evangelos Papalexakis Abhay Harpale LLNL, Jan C. Faloutsos (CMU)

CMU SCS Background: Tensor Tensors (=multi-dimensional arrays) are everywhere –Hyperlinks &anchor text [Kolda+,05] URL 1 URL 2 Anchor Text Java C++ C# LLNL, Jan C. Faloutsos (CMU)

CMU SCS Background: Tensor Tensors (=multi-dimensional arrays) are everywhere –Sensor stream (time, location, type) –Predicates (subject, verb, object) in knowledge base “Barrack Obama is the president of U.S.” “Eric Clapton plays guitar” (26M) (48M) NELL (Never Ending Language Learner) data Nonzeros =144M LLNL, Jan C. Faloutsos (CMU)

CMU SCS Background: Tensor Tensors (=multi-dimensional arrays) are everywhere –Sensor stream (time, location, type) –Predicates (subject, verb, object) in knowledge base LLNL, Jan C. Faloutsos (CMU) IP-destination IP-source Time-stamp Anomaly Detection in Computer networks

CMU SCS all I learned on tensors: from LLNL, Jan 2013C. Faloutsos (CMU) 71 Nikos Sidiropoulos UMN Tamara Kolda, Sandia Labs (tensor toolbox)

CMU SCS Problem Definition How to decompose a billion-scale tensor? –Corresponds to SVD in 2D case LLNL, Jan C. Faloutsos (CMU)

CMU SCS Problem Definition  Q1: Dominant concepts/topics?  Q2: Find synonyms to a given noun phrase?  (and how to scale up: |data| > RAM) (26M) (48M) NELL (Never Ending Language Learner) data Nonzeros =144M LLNL, Jan C. Faloutsos (CMU)

CMU SCS Experiments GigaTensor solves 100x larger problem Number of nonzero = I / 50 (J) (I) (K) GigaTensor Tensor Toolbox Out of Memory 100x LLNL, Jan C. Faloutsos (CMU)

CMU SCS A1: Concept Discovery Concept Discovery in Knowledge Base LLNL, Jan C. Faloutsos (CMU)

CMU SCS A1: Concept Discovery LLNL, Jan C. Faloutsos (CMU)

CMU SCS A2: Synonym Discovery LLNL, Jan C. Faloutsos (CMU)

CMU SCS C. Faloutsos (CMU) 78 Roadmap Introduction – Motivation Problem#1: Patterns in graphs Problem#2: Tools –Belief propagation –Tensors –Spike analysis Problem#3: Scalability -PEGASUS Conclusions LLNL, Jan 2013

CMU SCS Meme (# of mentions in blogs) –short phrases Sourced from U.S. politics in “you can put lipstick on a pig” “yes we can” Rise and fall patterns in social media C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS Rise and fall patterns in social media 80 Can we find a unifying model, which includes these patterns? four classes on YouTube [Crane et al. ’08] six classes on Meme [Yang et al. ’11] C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS Rise and fall patterns in social media 81 Answer: YES! We can represent all patterns by single model C. Faloutsos (CMU)LLNL, Jan 2013 In Matsubara+ SIGKDD 2012

CMU SCS 82 Main idea - SpikeM -1. Un-informed bloggers (uninformed about rumor) -2. External shock at time n b (e.g, breaking news) -3. Infection (word-of-mouth) Time n=0Time n=n b β C. Faloutsos (CMU)LLNL, Jan 2013 Infectiveness of a blog-post at age n: -Strength of infection (quality of news) -Decay function Time n=n b +1

CMU SCS Un-informed bloggers (uninformed about rumor) -2. External shock at time n b (e.g, breaking news) -3. Infection (word-of-mouth) Time n=0Time n=n b β C. Faloutsos (CMU)LLNL, Jan 2013 Infectiveness of a blog-post at age n: -Strength of infection (quality of news) -Decay function Time n=n b +1 Main idea - SpikeM

CMU SCS SpikeM - with periodicity Full equation of SpikeM 84 Periodicity noon Peak 3am Dip Time n Bloggers change their activity over time (e.g., daily, weekly, yearly) Bloggers change their activity over time (e.g., daily, weekly, yearly) activity C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS Details Analysis – exponential rise and power-raw fall 85 Lin-log Log-log Rise-part SI -> exponential SpikeM -> exponential Rise-part SI -> exponential SpikeM -> exponential C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS Details Analysis – exponential rise and power-raw fall 86 Lin-log Log-log Fall-part SI -> exponential SpikeM -> power law Fall-part SI -> exponential SpikeM -> power law C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS Tail-part forecasts 87 SpikeM can capture tail part C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS “What-if” forecasting 88 e.g., given (1) first spike, (2) release date of two sequel movies (3) access volume before the release date ? ? (1) First spike (2) Release date (3) Two weeks before release C. Faloutsos (CMU)LLNL, Jan 2013 ? ?

CMU SCS “What-if” forecasting 89 SpikeM can forecast upcoming spikes (1) First spike (2) Release date (3) Two weeks before release C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 90 Roadmap Introduction – Motivation Problem#1: Patterns in graphs Problem#2: Tools Problem#3: Scalability –PEGASUS –Diameter –Connected components Conclusions LLNL, Jan 2013

CMU SCS LLNL, Jan 2013C. Faloutsos (CMU) 91 Scalability Google: > 450,000 processors in clusters of ~2000 processors each [ Barroso, Dean, Hölzle, “Web Search for a Planet: The Google Cluster Architecture” IEEE Micro 2003 ] Yahoo: 5Pb of data [Fayyad, KDD’07] Problem: machine failures, on a daily basis How to parallelize data mining tasks, then? A: map/reduce – hadoop (open-source clone)

CMU SCS C. Faloutsos (CMU) 92 CentralizedHadoop/PEG ASUS Degree Distr. old Pagerank old Diameter/ANF old HERE Conn. Comp old HERE TrianglesdoneHERE Visualizationstarted Roadmap – Algorithms & results LLNL, Jan 2013

CMU SCS HADI for diameter estimation Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM’10 Naively: diameter needs O(N**2) space and up to O(N**3) time – prohibitive (N~1B) Our HADI: linear on E (~10B) –Near-linear scalability wrt # machines –Several optimizations -> 5x faster C. Faloutsos (CMU) 93 LLNL, Jan 2013

CMU SCS ???? 19+ [Barabasi+] 94 C. Faloutsos (CMU) Radius Count LLNL, Jan 2013 ~1999, ~1M nodes

CMU SCS YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Largest publicly available graph ever studied. ???? 19+ [Barabasi+] 95 C. Faloutsos (CMU) Radius Count LLNL, Jan 2013 ?? ~1999, ~1M nodes

CMU SCS YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Largest publicly available graph ever studied. ???? 19+? [Barabasi+] 96 C. Faloutsos (CMU) Radius Count LLNL, Jan (dir.) ~7 (undir.)

CMU SCS YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) 7 degrees of separation (!) Diameter: shrunk ???? 19+? [Barabasi+] 97 C. Faloutsos (CMU) Radius Count LLNL, Jan (dir.) ~7 (undir.)

CMU SCS YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape? ???? 98 C. Faloutsos (CMU) Radius Count LLNL, Jan 2013 ~7 (undir.)

CMU SCS 99 C. Faloutsos (CMU) YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) effective diameter: surprisingly small. Multi-modality (?!) LLNL, Jan 2013

CMU SCS Radius Plot of GCC of YahooWeb. 100 C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS 101 C. Faloutsos (CMU) YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) effective diameter: surprisingly small. Multi-modality: probably mixture of cores. LLNL, Jan 2013

CMU SCS 102 C. Faloutsos (CMU) YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) effective diameter: surprisingly small. Multi-modality: probably mixture of cores. LLNL, Jan 2013 EN ~7 Conjecture: DE BR

CMU SCS 103 C. Faloutsos (CMU) YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) effective diameter: surprisingly small. Multi-modality: probably mixture of cores. LLNL, Jan 2013 ~7 Conjecture:

CMU SCS Running time - Kronecker and Erdos-Renyi Graphs with billions edges. details

CMU SCS C. Faloutsos (CMU) 105 Roadmap Introduction – Motivation Problem#1: Patterns in graphs Problem#2: Tools Problem#3: Scalability –PEGASUS –Diameter –Connected components Conclusions LLNL, Jan 2013

CMU SCS Generalized Iterated Matrix Vector Multiplication (GIMV) C. Faloutsos (CMU) 106 PEGASUS: A Peta-Scale Graph Mining System - Implementation and ObservationsSystem - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).ICDM LLNL, Jan 2013

CMU SCS Generalized Iterated Matrix Vector Multiplication (GIMV) C. Faloutsos (CMU) 107 PageRank proximity (RWR) Diameter Connected components (eigenvectors, Belief Prop. … ) Matrix – vector Multiplication (iterated) LLNL, Jan 2013 details

CMU SCS 108 Example: GIM-V At Work Connected Components – 4 observations: Size Count C. Faloutsos (CMU) LLNL, Jan 2013

CMU SCS 109 Example: GIM-V At Work Connected Components Size Count C. Faloutsos (CMU) LLNL, Jan ) 10K x larger than next

CMU SCS 110 Example: GIM-V At Work Connected Components Size Count C. Faloutsos (CMU) LLNL, Jan ) ~0.7B singleton nodes

CMU SCS 111 Example: GIM-V At Work Connected Components Size Count C. Faloutsos (CMU) LLNL, Jan ) SLOPE!

CMU SCS 112 Example: GIM-V At Work Connected Components Size Count 300-size cmpt X 500. Why? 1100-size cmpt X 65. Why? C. Faloutsos (CMU) LLNL, Jan ) Spikes!

CMU SCS 113 Example: GIM-V At Work Connected Components Size Count suspicious financial-advice sites (not existing now) C. Faloutsos (CMU) LLNL, Jan 2013

CMU SCS 114 GIM-V At Work Connected Components over Time LinkedIn: 7.5M nodes and 58M edges Stable tail slope after the gelling point C. Faloutsos (CMU)LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 115 Roadmap Introduction – Motivation Problem#1: Patterns in graphs Problem#2: Tools Problem#3: Scalability Conclusions LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 116 OVERALL CONCLUSIONS – low level: Several new patterns (fortification, triangle-laws, conn. components, etc) New tools: –belief propagation, gigaTensor, etc Scalability: PEGASUS / hadoop LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 117 OVERALL CONCLUSIONS – high level BIG DATA: Large datasets reveal patterns/outliers that are invisible otherwise LLNL, Jan 2013

CMU SCS ML & Stats. Comp. Systems Theory & Algo. Biology Econ. Social Science Physics 118 Graph Analytics LLNL, Jan 2013C. Faloutsos (CMU)

CMU SCS C. Faloutsos (CMU) 119 References Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006) LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 120 References Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008) Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 121 References Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174 LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 122 References T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp , December LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 123 References Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award). Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: LLNL, Jan 2013

CMU SCS References Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, Christos Faloutsos, "Rise and Fall Patterns of Information Diffusion: Model and Implications", KDD’12, pp. 6-14, Beijing, China, August 2012 LLNL, Jan 2013C. Faloutsos (CMU) 124

CMU SCS C. Faloutsos (CMU) 125 References Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameter- free Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007 LLNL, Jan 2013

CMU SCS References Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: LLNL, Jan 2013C. Faloutsos (CMU) 126

CMU SCS C. Faloutsos (CMU) 127 References Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong. Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 128 References Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: LLNL, Jan 2013

CMU SCS C. Faloutsos (CMU) 129 Project info & ‘thanks’ LLNL, Jan 2013 Thanks to: NSF IIS , IIS , CTA-INARC ; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

CMU SCS C. Faloutsos (CMU) 130 Cast Akoglu, Leman Chau, Polo Kang, U McGlohon, Mary Tong, Hanghang Prakash, Aditya LLNL, Jan 2013 Koutra, Danae Beutel, Alex Papalexakis, Vagelis

CMU SCS C. Faloutsos (CMU) 131 Thanks to LLNL colleagues LLNL, Jan 2013 Brian Gallagher Keith Henderson

CMU SCS Take-home message LLNL, Jan 2013C. Faloutsos (CMU) 132 Tera/Peta-byte data AnalyticsInsights, outliers Big data reveal insights that would be invisible otherwise (even to experts)