Second Law of Thermodynamics (YAC Ch.5) Identifies the direction of a process. (e.g.: Heat can only spontaneously transfer from a hot object to a cold.

Slides:



Advertisements
Similar presentations
The Second Law of Thermodynamics
Advertisements

The Carnot Cycle Idealized thermodynamic cycle consisting of four reversible processes (any substance):  Reversible isothermal expansion (1-2, T H =constant)
Dr. Jie ZouPHY Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics.
JIF 314 Thermodynamics Chapter 6 The second law of thermodynamics.
The Cyclic Devices P M V Subbarao Professor Mechanical Engineering Department Create Resources Parallel to Nature…..
Analysis of Second Law & Reversible Cyclic Machines P M V Subbarao Professor Mechanical Engineering Department Methods to Recognize Practicable Good Innovations…..
Chapter 6 The Second Law of Thermodynamics Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus.
5 CHAPTER The Second Law of Thermodynamics.
Thermodynamics Lecture Series Applied Sciences Education.
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
Second Law of Thermodynamics Identify the direction of a process. (ex: Heat can only transfer from a hot object to a cold object, not the other around)
EGR 334 Thermodynamics Chapter 5: Sections 1-9
Chapter 5 The Second Law of Thermodynamics
Thermodynamics I MECN 4201 Professor: Dr. Omar E. Meza Castillo
Reversible Processes The second law of thermodynamics state that no heat engine can have an efficiency of 100%. Then one may ask, what is the highest efficiency.
Thermodynamics I Chapter 5 Second Law of Thermodynamics Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia.
THE SECOND LAW OF THERMODYNAMICS
The second law of thermodynamics: The heat flow statement: Heat flows spontaneously from a substance at a higher temperature to a substance at a lower.
VII. The second low of Thermodynamics
CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS
Limitation of the 1st law of thermodynamics
Power and Refrigeration Cycles – Applications (YAC: Ch. 7) Most devices operate on cycles (open or closed) of two common types: Power Cycles: Produce net.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
ChemE 260 The 2 nd Law of Thermodynamics April 26, 2005 Dr. William Baratuci Senior Lecturer Chemical Engineering Department University of Washington TCD.
Heat Engines and The Carnot Cycle. First Statement of the Second Law of Thermodynamics The first statement of the second law is a statement from common.
The Second Law of Thermodynamics Chapter 6. The Second Law  The second law of thermodynamics states that processes occur in a certain direction, not.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Thermodynamic cycles 2nd law of Thermodynamics Carnot Cycle Lecture 30: 2nd Law of Thermodynamics.
Chapter 7 THE SECOND LAW OF THERMODYNAMICS
Chapter 6 The Second Law of Thermodynamics Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 8th edition by Yunus.
PTT 201/4 THERMODYNAMICS SEM 1 (2013/2014) 1. Objectives Introduce the second law of thermodynamics. Identify valid processes as those that satisfy both.
PHY1039 Properties of Matter Heat Engines, Thermodynamic Efficiency, and Carnot Cycles April 30 and May 3, 2012 Lectures 17 and 18.
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
1 Second Law of Thermodynamics Engines and Refrigerators.
Second Law of Thermodynamics P M V Subbarao Professor Mechanical Engineering Department In search of Cycles with Better Cost-to-Benefit Ratio…….…
Second Law It is impossible to construct a device which operating in a cycle will produce no effect other than transfer of heat from a cooler to a hotter.
Second Law of Thermodynamics Heat generally cannot flow spontaneously from a material at lower temperature to a material at higher temperature. The entropy.
Second law of thermodynamics. The Second Law of Thermodynamics.
L.C. INSTITUTE OF TECHNOLOGY BHANDU. Ch.2  Ch.2 Second Law of Second Law of Thermodynamics Thermodynamics.
Unit 61: Engineering Thermodynamics Lesson 8: Second Law of Thermodynamics.
Unit 61: Engineering Thermodynamics Lesson 9: Carnot Engine Cycles.
K.J. INSTITUTE OF ENGINEERING AND TECHNOLOGY FACULTIES :- Santosh Varma Bhavin Sir By :- Parth tavrawala ( ) BRANCH :MECHANICAL B (D2D) Engineering.
Carnot theorem and its corollary. Most energy extracted from the fuel in power plants is dumped to the environment as waste heat, here using a large cooling.
Chapter 7 THE SECOND LAW OF THERMODYNAMICS
Carnot Cycle Pratik Vasava ( ) Dept. of Mech. Engg., ADIT, New V. V. Nagar.
1 Reversible Processes The second law of thermodynamics state that no heat engine can have an efficiency of 100%. Then one may ask, what is the highest.
2 2 The second law of thermodynamics It will arouse changes while the heat transfers from low temp. substance to high temp. one.
THE SECOND LAW OF THERMODYNAMICS
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
Second Low of Thermodynamics
Chapter: 06 The Second Law.
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
Heat Engines Perpetual Motion Machines are Impossible hot reservoir TH
Equivalence of the Two Statements
LAXMI INSTITUTE OF TECHNOLOGY
An iso certified institute
The Second Law of Thermodynamics: Kelvin–Planck Statement
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
THE SECOND LAW OF THERMODYNAMICS
Heat Engines Entropy The Second Law of Thermodynamics
An Engineering Approach Chapter 6 THE SECOND LAW OF THERMODYNAMICS
Second Law of Thermodynamics
Chapter 6 THE SECOND LAW OF THERMODYNAMICS
SECOND LAW OF THERMODYNAMICS
Chapter 5: The Second Law of Thermodynamics
Equivalence of the Two Statements
Chapter 7 THE SECOND LAW OF THERMODYNAMICS
Presentation transcript:

Second Law of Thermodynamics (YAC Ch.5) Identifies the direction of a process. (e.g.: Heat can only spontaneously transfer from a hot object to a cold object, not vice versa) Used to determine the “Quality” of energy. (e.g.: A high-temperature energy source has a higher quality since it is easier to extract energy from it to deliver useable work.) Used to exclude the possibility of constructing 100% efficient heat engine and perpetual-motion machines. (violates the Kevin-Planck and the Clausius statements of the second law) Used to introduce concepts of reversible processes and irreversibilities. Determines the theoretical performance limits of engineering systems. (e.g.: A Carnot engine is theoretically the most efficient heat engine; its performance can be used as a standard for other practical engines) Second-law.ppt Modified 10/9/02

Second Law (cont) A process can not happen unless it satisfies both the first and second laws of thermodynamics. The first law characterizes the balance of energy which defines the “quantity” of energy. The second law defines the direction which the process can take place and its “quality”. Define a “Heat Engine”: A device that converts heat into work while operating in a cycle.Heat Engine Heat engine QHQH QLQL THTH TLTL W net  Q-W net =  U (since  U=0 for a cycle)  W net =Q H -Q L Thermal efficiency,  th is defined as  th =W net /Q H =(Q H -Q L )/Q H =1-(Q L /Q H ) Question: Can we produce an 100% heat engine, i.e. a heat engine where Q L =0?

Steam Power Plant A steam power plant is a good example of a heat engine where the working fluid, water, undergoes a thermodynamic cycle W net = W out - W in = Q in -Q out Q in is the heat transferred from the high temp. reservoir, and is generally referred to as Q H Q out is the heat transferred to the low temp. reservoir, and is generally referred to as Q L Thermal efficiency  th = W net /Q H = (Q H -Q L )/Q H =1-(Q L /Q H ) Typical Efficiency of a large commercial steam power plant  40% Thermal Reservoir  hypothetical body with a very large thermal capacity (relative to the system beig examined) to/from which heat can be transferred without changing its temperature. E.g. the ocean, atmosphere, large lakes. Back

Kevin-Planck Statement The Kelvin-Planck Statement is another expression of the second law of thermodynamics. It states that: It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce net work. This statement is without proof, however it has not been violated yet. Consequently, it is impossible to built a heat engine that is 100%. Heat engine QHQH THTH W net A heat engine has to reject some energy into a lower temperature sink in order to complete the cycle. T H >T L in order to operate the engine. Therefore, the higher the temperature, T H, the higher the quality of the energy source and more work is produced. Impossible because it violates the Kelvin-Planck Statement/Second Law

Heat Pumps and Refrigerators A “heat pump” is defined as a device that transfers heat from a low-temperature source to a high-temperature one. E.g. a heat pump is used to extract energy from outside cold outdoor air into the warm indoors. A refrigerator performs the same function; the difference between the two is in the type of heat transfer that needs to be optimized. The efficiencies of heat pumps and refrigerators are denoted by the Coefficient of Performance (COP) where Heat pump/ Refrigerator QHQH QLQL THTH TLTL W net For a Heat Pump: COP HP =Q H /W net =Q H /(Q H -Q L ) = 1/(1-Q L /Q H ) For a Refrigerator: COP R =Q L /W net =Q L /(Q H -Q L ) = 1/(Q H /Q L -1) Note: COP HP = COP R + 1 COP HP >1, ex: a typical heat pump has a COP in the order of 3 Question: Can one build a heat pump operating COP= , that is W net = 0 and Q H =Q?

Clausius Statement The Clausius Statement is another expression of the second law of thermodynamics. It states that: It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher- temperature body. Similar to the K-P Statement, it is a negative statement and has no proof, it is based on experimental observations and has yet to be violated. Heat can not be transferred from low temperature to higher temperature unless external work is supplied. Heat pump QHQH QLQL THTH TLTL Therefore, it is impossible to build a heat pump or a refrigerator without external work input.

Equivalence of the Two Statements It can be shown that the violation of one statement leads to a violation of the other statement, i.e. they are equivalent. A 100% efficient heat engine; violates K-P Statement Heat pump QLQL QLQL THTH TLTL Heat transfer from low-temp body to high-temp body without work; A violation of the Clausius statement Heat pump Q H +Q L QLQL THTH TLTL W net =Q H Heat engine QHQH

Perpetual-Motion Machines (YAC: 5-5) Imagine that we can extract energy from unlimited low-temperature energy sources such as the ocean or the atmosphere (both can be thought of as thermal reservoirs). Heat engine Heat pump QLQL QHQH QHQH W in = Q H -Q L W net =Q L THTH Ocean T L It is against the Kevin-Planck statement: it is impossible to build an 100% heat engine. Perpetual Motion Machines, PMM, are classified into two types: PMM1- Perpetual Motion Machines of the First Kind: They violate the First Law of Thermodynamics PMM2 - Perpetual Motion Machines of the Second Kind : Violate the Second Law of Thermodynamics

Reversible Processes and Irreversibilities (YAC: 5-6) A reversible process is one that can be executed in the reverse direction with no net change in the system or the surroundings. At the end of a forwards and backwards reversible process, both system and the surroundings are returned to their initial states. No real processes are reversible. However, reversible processes are theoretically the most efficient processes. All real processes are irreversible due to irreversibilities. Hence, real processes are less efficient than reversible processes. Common Sources of Irreversibility: Friction Sudden Expansion and compression Heat Transfer between bodies with a finite temperature difference. A quasi-equilibrium process, e.g. very slow, frictionless expansion or compression is a reversible process.

Reversible Processes and Irreversibilities (cont’d) A work-producing device which employs quasi-equlibrium or reversible processes produces the maximum amount of work theoretically possible. A work-consuming device which employs quasi-equilibrium or reversible processes requires the minimum amount of work theoretically possible. One of the most common idealized cycles that employs all reversible processes is called the Carnot Cycle proposed in 1824 by Sadi Carnot.