In Chapters 2 and 3, you studied linear functions of the form f(x) = mx + b. A quadratic function is a function that can be written in the form of f(x)

Slides:



Advertisements
Similar presentations
Using Transformations to Graph Quadratic Functions 5-1
Advertisements

Using Transformations to Graph Quadratic Functions 5-1
Parent Function Transformation Students will be able to find determine the parent function or the transformed function given a function or graph.
Chapter 5.1 – 5.3 Quiz Review Quizdom Remotes!!!.
Objective Transform polynomial functions..
The vertex of the parabola is at (h, k).
Radical Functions Warm Up Lesson Presentation Lesson Quiz
Warm Up For each translation of the point (–2, 5), give the coordinates of the translated point units down (–2, –1) 2. 3 units right (1, 5) For each.
Graphs of Quadratic Function Introducing the concept: Transformation of the Graph of y = x 2.
Transform quadratic functions.
Radical Functions 8-7 Warm Up Lesson Presentation Lesson Quiz
Warm Up Identify the domain and range of each function.
2.2 b Writing equations in vertex form
5.1 Stretching/Reflecting Quadratic Relations
CHAPTER Solving radicals.
Objectives Graph radical functions and inequalities.
An absolute-value function is a function whose rule contains an absolute-value expression. The graph of the parent absolute-value function f(x) = |x| has.
Holt Algebra Using Transformations to Graph Quadratic Functions Transform quadratic functions. Describe the effects of changes in the coefficients.
C HAPTER Using transformations to graph quadratic equations.
9.3 Graphing Quadratic Functions
Give the coordinate of the vertex of each function.
9-1 Quadratic Equations and Functions Solutions of the equation y = x 2 are shown in the graph. Notice that the graph is not linear. The equation y = x.
Quadratic Functions Vertex Form.
Objectives Transform quadratic functions.
To remember the difference between vertical and horizontal translations, think: “Add to y, go high.” “Add to x, go left.” Helpful Hint.
Introduction Transformations can be made to functions in two distinct ways: by transforming the core variable of the function (multiplying the independent.
Objectives Define, identify, and graph quadratic functions.
M3U6D1 Warm Up Identify the domain and range of each function. D: R ; R:{y|y ≥2} 1. f(x) = x D: R ; R: R 2. f(x) = 3x 3 Use the description to write.
Warm-Up Factor. 6 minutes 1) x x ) x 2 – 22x ) x 2 – 12x - 64 Solve each equation. 4) d 2 – 100 = 0 5) z 2 – 2z + 1 = 0 6) t
Holt McDougal Algebra Using Transformations to Graph Quadratic Functions Warm Up For each translation of the point (–2, 5), give the coordinates.
Transformations Review Vertex form: y = a(x – h) 2 + k The vertex form of a quadratic equation allows you to immediately identify the vertex of a parabola.
QUADRATIC FUNCTIONS. Transform quadratic functions. Describe the effects of changes in the coefficients of y = a(x – h)² + k. Objectives quadratic function.
Warm Up Give the coordinates of each transformation of (2, –3). 4. reflection across the y-axis (–2, –3) 5. f(x) = 3(x + 5) – 1 6. f(x) = x 2 + 4x Evaluate.
Holt McDougal Algebra 2 Radical Functions Graph radical functions and inequalities. Transform radical functions by changing parameters. Objectives.
Objectives Transform quadratic functions.
Holt McDougal Algebra 2 Using Transformations to Graph Quadratic Functions If a parabola opens upward, it has a lowest point. If a parabola opens downward,
UNIT 5 REVIEW. “MUST HAVE" NOTES!!!. You can also graph quadratic functions by applying transformations to the parent function f(x) = x 2. Transforming.
Warm-Up Evaluate each expression for x = -2. 1) (x – 6) 2 4 minutes 2) x ) 7x 2 4) (7x) 2 5) -x 2 6) (-x) 2 7) -3x ) -(3x – 1) 2.
5-3 Using Transformations to Graph Quadratic Functions.
Radical Functions.
*Review Lesson 6.1, 6.2 & 6.3: Understanding, Graphing, Transforming Quadratic Functions (Pgs )
Unit 2 – Quadratic Functions & Equations. A quadratic function can be written in the form f(x) = ax 2 + bx + c where a, b, and c are real numbers and.
Quadratic Graphs and Their Properties
Quadratic Functions and Transformations Lesson 4-1
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Warm Up For each translation of the point (–2, 5), give the coordinates of the translated point units down 2. 3 units right For each function, evaluate.
Transformations of Quadratic Functions (9-3)
13 Algebra 1 NOTES Unit 13.
Using Transformations to Graph Quadratic Functions 5-1
Chapter 5 – Quadratic Functions
Give the coordinate of the vertex of each function.
Identifying quadratic functions
Graphs of Quadratic Functions
Objectives Transform quadratic functions.
5-7 Warm Up – Discovery with Partners
Chapter 9 Modeling With Functions
Objectives Transform quadratic functions.
Algebra 1 Section 12.8.
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Bellwork.
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3.
Warm-up: Welcome Ticket
Graphing Quadratic Functions
Objectives Define, identify, and graph quadratic functions.
P A R B O L S.
The vertex of the parabola is at (h, k).
Translations & Transformations
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Section 8.1 “Graph y = ax²”.
Presentation transcript:

In Chapters 2 and 3, you studied linear functions of the form f(x) = mx + b. A quadratic function is a function that can be written in the form of f(x) = a (x – h)2 + k (a ≠ 0). In a quadratic function, the variable is always squared. The table shows the linear and quadratic parent functions.

Notice that the graph of the parent function f(x) = x2 is a U-shaped curve called a parabola. As with other functions, you can graph a quadratic function by plotting points with coordinates that make the equation true.

Graph f(x) = x2 – 4x + 3 by using a table. Make a table. Plot enough ordered pairs to see both sides of the curve. x f(x)= x2 – 4x + 3 (x, f(x)) f(0)= (0)2 – 4(0) + 3 (0, 3) 1 f(1)= (1)2 – 4(1) + 3 (1, 0) 2 f(2)= (2)2 – 4(2) + 3 (2,–1) 3 f(3)= (3)2 – 4(3) + 3 (3, 0) 4 f(4)= (4)2 – 4(4) + 3 (4, 3)

f(x) = x2 – 4x + 3 • • • • •

Check It Out! Example 1 Graph g(x) = –x2 + 6x – 8 by using a table. Make a table. Plot enough ordered pairs to see both sides of the curve. x g(x)= –x2 +6x –8 (x, g(x)) –1 g(–1)= –(–1)2 + 6(–1) – 8 (–1,–15) 1 g(1)= –(1)2 + 6(1) – 8 (1, –3) 3 g(3)= –(3)2 + 6(3) – 8 (3, 1) 5 g(5)= –(5)2 + 6(5) – 8 (5, –3) 7 g(7)= –(7)2 + 6(7) – 8 (7, –15)

Check It Out! Example 1 Continued f(x) = –x2 + 6x – 8 • • • • •

You can also graph quadratic functions by applying transformations to the parent function f(x) = x2. Transforming quadratic functions is similar to transforming linear functions (Lesson 2-6).

Use the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. g(x) = (x – 2)2 + 4 Identify h and k. g(x) = (x – 2)2 + 4 h k Because h = 2, the graph is translated 2 units right. Because k = 4, the graph is translated 4 units up. Therefore, g is f translated 2 units right and 4 units up.

Use the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. g(x) = (x + 2)2 – 3 Identify h and k. g(x) = (x – (–2))2 + (–3) h k Because h = –2, the graph is translated 2 units left. Because k = –3, the graph is translated 3 units down. Therefore, g is f translated 2 units left and 4 units down.

Whiteboards Using the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. g(x) = x2 – 5 Identify h and k. g(x) = x2 – 5 k Because h = 0, the graph is not translated horizontally. Because k = –5, the graph is translated 5 units down. Therefore, g is f is translated 5 units down.

Whiteboards Use the graph of f(x) =x2 as a guide, describe the transformations and then graph each function. g(x) = (x + 3)2 – 2 Identify h and k. g(x) = (x – (–3)) 2 + (–2) h k Because h = –3, the graph is translated 3 units left. Because k = –2, the graph is translated 2 units down. Therefore, g is f translated 3 units left and 2 units down.

Recall that functions can also be reflected, stretched, or compressed.

Using the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. 1 ( ) g x =- x 2 4 Because a is negative, g is a reflection of f across the x-axis. Because |a| = , g is a vertical compression of f by a factor of .

Using the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. g(x) =(3x)2 Because b = , g is a horizontal compression of f by a factor of .

Whiteboards Using the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. g(x) =(2x)2 Because b = , g is a horizontal compression of f by a factor of .

Whiteboards Using the graph of f(x) = x2 as a guide, describe the transformations and then graph each function. g(x) = – x2 Because a is negative, g is a reflection of f across the x-axis. Because |a| = , g is a vertical compression of f by a factor of .

If a parabola opens upward, it has a lowest point If a parabola opens upward, it has a lowest point. If a parabola opens downward, it has a highest point. This lowest or highest point is the vertex of the parabola. The parent function f(x) = x2 has its vertex at the origin. You can identify the vertex of other quadratic functions by analyzing the function in vertex form. The vertex form of a quadratic function is f(x) = a(x – h)2 + k, where a, h, and k are constants.

Because the vertex is translated h horizontal units and k vertical from the origin, the vertex of the parabola is at (h, k). When the quadratic parent function f(x) = x2 is written in vertex form, y = a(x – h)2 + k, a = 1, h = 0, and k = 0. Helpful Hint

Use the description to write the quadratic function in vertex form. The parent function f(x) = x2 is vertically stretched by a factor of and then translated 2 units left and 5 units down to create g. Step 1 Identify how each transformation affects the constant in vertex form. Vertical stretch by : 4 3 a = Translation 2 units left: h = –2 Translation 5 units down: k = –5

Step 2 Write the transformed function. g(x) = a(x – h)2 + k Vertex form of a quadratic function = (x – (–2))2 + (–5) Substitute for a, –2 for h, and –5 for k. = (x + 2)2 – 5 Simplify. g(x) = (x + 2)2 – 5

Check Graph both functions on a graphing calculator Check Graph both functions on a graphing calculator. Enter f as Y1, and g as Y2. The graph indicates the identified transformations. f g

Whiteboards Use the description to write the quadratic function in vertex form. The parent function f(x) = x2 is vertically compressed by a factor of and then translated 2 units right and 4 units down to create g.

Whiteboards Use the description to write the quadratic function in vertex form. The parent function f(x) = x2 is reflected across the x-axis and translated 5 units left and 1 unit up to create g.