Taxonomy of Small Bodies AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan.

Slides:



Advertisements
Similar presentations
A. Cellino & S. Bagnulo - Helsinki, 19-21/08/2013 INAF --Osservatorio Astrofisico di Torino Spectro-Polarimetry as a potentially powerful tool for asteroid.
Advertisements

M.A.D.A.N.A.C Ph. Bendjoya L.U.A.N-U.N.S/C.N.R.S A. Cellino Osservatorio di Torino I.N.A.F M.A.D.A.N.A.C Measurement And Discovery of Asteroids and NEOs.
Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2006/2007 B. Dermawan AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi.
Properties of the NEO Population: The ACM 2005 View Richard P. Binzel (MIT) Dmitrij Lupishko ( Kharkov Observatory)
Johan Warell*, A. Sprague, R. Kozlowski, A. Önehag*, G. Trout, B. Davidsson*, J. Helbert, D. Rothery *Department of Physics and Astronomy, Uppsala University,
Interplanetary bodies: asteroids asteroid-- rocky object in orbit around the sun includes: Main Belt asteroid Hilda and Thule asteroid near-Earth asteroid.
Some Short Topics AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan.
Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan.
Asteroid’s Thermal Models AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 Budi Dermawan.
Two-parameter Magnitude System for Small Bodies Kuliah AS8140 & AS3141 (Fisika) Benda Kecil [dalam] Tata Surya Prodi Astronomi 2006/2007.
Laboratory data on ices, minerals and organics for TNOs and Centaurs: what is missing ? C. de Bergh 1, B. Schmitt 2, D.P. Cruikshank 3, L. Moroz 4, E.
832 Karin Shows No Rotational Spectral Variations Clark R. Chapman, B. Enke, W.J. Merline, D. Nesvorný, P. Tamblyn, and E.F. Young Southwest Research Institute.
Radiation & Photometry AS4100 Astrofisika Pengamatan Prodi Astronomi 2007/2008 B. Dermawan.
Many sources (hot, glowing, solid, liquid or high pressure gas) show a continuous spectra across wavebands. Emission spectra Elements in hot gases or.
A NEW PERSPECTIVE TO VISIBLE NEAR INFRARED REFLECTANCE SPECTROSCOPY: A WAVELET APPROACH Yufeng Ge, Cristine L.S. Morgan, J. Alex Thomasson and Travis Waiser.
The Earthshine Spectrum in the Near Infrared M. Turnbull 1, W. Traub 2, K. Jucks 3, N. Woolf 4, M. Meyer 4, N. Gorlova 4, M. Skrutskie 5, J. Wilson 5 1.
3-13 Micron Spectroscopy of Comet 73P/Schwassmann- Wachmann 3 M.L. Sitko (Space Science Inst. & Univ. Of Cincinnati) D.K. Lynch, R.W. Russell (The Aerospace.
The surface composition of Ceres: Using new IRTF spectral measurements
1 Spectral and mineralogical diversity among the M-asteroids P.S. Hardersen 1, M.J. Gaffey 1, P.A. Abell 2, E.A. Cloutis 3, V. Reddy 1, S.K. Fieber-Beyer.
1 Lab experiments on phyllosilicates and comparison with CRISM data of Mars Mario Parente, Janice L. Bishop and Javier Cuadros.
B12 Next Generation Supernova Surveys Marek Kowalski 1 and Bruno Leibundgut 2 1 Physikalisches Institut, Universität Bonn 2 European Southern Observatory.
Potentially Hazardous Asteroid 2004 XP14: Constraining Albedo, Diameter, & Taxonomy Target of Opportunity, NASA IRTF V. Reddy, M.J. Gaffey, P.S. Hardersen,
Reflectance Spectroscopy - a powerful remote sensing tool - A. Nathues, IMPRS Course 2007.
Hyperspectral Imaging Alex Chen 1, Meiching Fong 1, Zhong Hu 1, Andrea Bertozzi 1, Jean-Michel Morel 2 1 Department of Mathematics, UCLA 2 ENS Cachan,
Pre-Rosetta Compositional Studies of Asteroid 21 Lutetia Clark R. Chapman 1, W.J. Merline 1, B. Carry 2, H.A. Weaver 3, A. Conrad 4, and J.D. Drummond.
Solar spectrum, J. W. Draper 1840 John W. Draper ( ) Henry Draper ( ) Courtesy of Smithsonian Institution.
PHYSICAL CHARACTERIZATION OF ASTEROIDS NEON Group 5: Koraljka Mužić Nikola Vitas Grzegorz Nowak Mario Mars Simone Marchi (tutor) 5 th NEON SCHOOL, OHP,
Asteroids 2867 Steins and 21 Lutetia: results from groundbased observations and from the Rosetta fly-bys S. Fornasier 1,2, M.A. Barucci 1, M. Fulchignoni.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Type and redshift distributions 65 candidates have been observed between June 2003 and May Redshift is measured by using emission and/or absorption.
VESTA – A HISTORICAL PERSPECTIVE
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
Beyond the Hematite: More Reasons To Visit Meridiani Wendy Calvin, Alicia Fallacaro (UNR) Alice Baldridge (ASU) Supported by NASA EPSCOR, PGG, MER-PS.
S. Erard et al. — Workshop 3e zone, Nantes, janvier 2007 Analysis of spectral features in TNO and asteroid spectra S. Erard, D. Despan, F. Merlin.
: The Golden Age of Solar System Exploration TNOs: Four decades of observations. F. Merlin M.A. Barucci S. Fornasier D. Perna.
Searching for Brown Dwarf Companions to Nearby Stars Michael W. McElwain, James E. Larkin & Adam J. Burgasser (UC Los Angeles) Background on Brown Dwarfs.
Estimating Water Optical Properties, Water Depth and Bottom Albedo Using High Resolution Satellite Imagery for Coastal Habitat Mapping S. C. Liew #, P.
 Introduction  Surface Albedo  Albedo on different surfaces  Seasonal change in albedo  Aerosol radiative forcing  Spectrometer (measure the surface.
Metabolomics Metabolome Reflects the State of the Cell, Organ or Organism Change in the metabolome is a direct consequence of protein activity changes.
ASTRONOMY 340 FALL 2007 Lecture # 23 October 2007.
Summary of Spectroscopy Results. Recap  VNIR - visible/near-infrared spectrometer  µm wavelengths, reflectivity  Rover-mounted  Sensitive.
GEOG2021 Environmental Remote Sensing Lecture 3 Spectral Information in Remote Sensing.
Adaptive Optics for Astronomy Kathy Cooksey. AO Basics Photons –Travel in straight lines Wavefront –Line perpendicular to all photons’ paths Atmospheric.
Environmental Remote Sensing GEOG 2021 Lecture 3 Spectral information in remote sensing.
Hyperspectral remote sensing
Recent Advances in Asteroid Polarimetry A.Cellino, E. Ammannito, S. Bagnulo, I.N. Belskaya, R. Gil-Hutton, P. Tanga, E.F. Tedesco.
Space Weathering on Phobos and Deimos
The Critical Importance of Data Reduction Calibrations In the Interpretability of S-type Asteroid Spectra Michael J. Gaffey Space Studies Department University.
Astronomy 340 Fall October 2005 Class #???
Automated Classification of X-ray Sources for Very Large Datasets Susan Hojnacki, Joel Kastner, Steven LaLonde Rochester Institute of Technology Giusi.
NIR, MIR, & FIR.  Near-infrared observations have been made from ground based observatories since the 1960's  Mid and far-infrared observations can.
Micro-structural size properties of Saturn’s rings determined from ultraviolet measurements made by the Cassini Ultraviolet Imaging Spectrograph Todd Bradley.
Variation of the 9.7 µm Silicate Absorption Feature with Extinction in the Dense Interstellar Medium Megan M. Bagley with Dr. Jean E. Chiar, SETI Institute.
Centaur Physical Properties and Dynamics Emily Schaller (University of Arizona) Nader Haghighipour (University of Hawaii) Mike Brown (Caltech)
Compositional And Physical Characterizations Of NEOs From VNIR Spectroscopy Michael J. Gaffey 1,3 Paul A. Abell 2,3 Paul S. Hardersen 1,3 1 Department.
GEOG2021 Environmental Remote Sensing
Selected Hyperspectral Mapping Method
M. Lazzarin, S. Marchi Astronomy Dept. Padova
Hyperspectral Sensing – Imaging Spectroscopy
E-type asteroids and related meteorites
Dr. Paul S. Hardersen University of North Dakota
Tomas Kohout, Antti Näsilä, Tuomas Tikka, Mikael Granvik, Antti Kestilä, Antti Penttilä, Janne Kuhno, Karri Muinonen, Kai Viherkanto, Esa Kallio VTT Technical.
Tomas Kohout, Antti Näsilä, Tuomas Tikka, Mikael Granvik, Antti Kestilä, Antti Penttilä, Janne Kuhno, Karri Muinonen, Kai Viherkanto, Esa Kallio VTT Technical.
832 Karin Shows No Rotational Spectral Variations
(1) Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)
Hyperspectral Image preprocessing
A Study of Accretion Disks Around Young Binary Star Systems
Hydrated Minerals on asteroids: the relationship between the 0
Studies of Asteroids from Earth and Space
Investigation of the Origin of 2008TC3 Through Spectral Analysis of F-type Asteroids and Lab Spectra of Almahata Sitta and Mineral Mixtures By Bill Freeman.
Presentation transcript:

Taxonomy of Small Bodies AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan

Spectroscopy: history (1) 1929: Photographic Spectra Visible spectrum of 0.39 – 0.47  m (Vesta; Bobrovnikoff 1929) 1970: Spectrophotometry Visible spectrum of 0.3 – 1.1  m (McCord et al. 1970; Chapman et al. 1971)  Strong absorption bands in the UV and near 1  m First rigorous asteroid taxonomy (Chapman et al. 1975)  asteroid mineralogy Mid-1980s: Spectrophotometry Surveys Eight-Color Asteroid Survey (ECAS, Zellner et al. 1985)  ~600 asteroids  Tholen taxonomy (Tholen 1984)

Spectroscopy: history (2) Spectrograph: Spectroscopic survey Low-albedo asteroid survey (115 asteroids; Sawyer 1991) First Phase of Small Main-belt Asteroid Spectroscopic Survey (SMASSI: 316 asteroids; Xu et al. 1995) Second Phase of Small Main-belt Asteroid Spectroscopic Survey (SMASSII: 1447 asteroids; Bus & Binzel 2002) Small Solar System Objects Spectroscopic Survey (S 3 OS 2 : ongoing >800 asteroids; Lazzaro et al. 2001) Spectroscopy  visible-wavelength spectroscopy

Spectroscopy Bus et al Preprocessing of the CCD images Extraction of one-dimensional spectra Calibration of the extracted spectra Normalization to a solar-analog star

Bus & Binzel 2002 ECAS Colors & SMASSII Spectra

Object’s Surface Material Different surface material on Vesta  m Fe 2+ pyroxene  presence of Ca-rich

Effects of Surface Properties Phase reddening: reddening of reflectance spectra with increased phase angle NIR Spectrometer to Eros: slope 8-12% over phase angles 0  -100  Space Weathering: darkening & reddening of asteroids’ surface e.g. Chapman 1996: Explaining the spectral mismatches between asteroids and meteorites Particle size Particulate regolith on the surface Temperature 120 K (Trojans) to >300 K (NEAs) Shapes of spectral bands (olivines & pyroxenes) are sensitive to temperature

Taxonomy: methods Asteroid classification Bowell et al  Tholen & Barucci 1989 Data sets: - ECAS (Zellner etl al. 1985) - IRAS albedo (Veeder et al. 1989, Tedesco et al. 1992) Statistically significant boundaries exist between clusters of objects 1.Tholen taxonomy (1984): spanning tree clustering algorithm 2.Barucci et al. taxonomy (1987): G-mode analysis 3.Tedesco et al. taxonomy (1989): visual identification of groupings in a parameter space (two asteroid colors & IRAS albedo) 4.Howell et al taxonomy (1994): artificial neural network

Tholen taxonomy was utilized in an attempt to preserve the historic structure and spirit of past asteroid taxonomies Classes were defined solely on the presence (or absence) of absorption features contained in the visible-wavelength spectra The classes were arranged in a way that reflects the spectral continuum revealed by the SMASSII data Different analytical and multivariate analysis technique were used to properly parameterize the various spectral features. Labels of some class were based on human judgment. When possible, the sizes (scale-lengths) and boundaries of the taxonomic classes were defined based on the spectral variance observed in natural groupings among the asteroids. SMASSII Taxonomy: basics Bus et al. 2002

SMASSII Taxonomy: method Parameterization Principle Component Analysis (PCA)  Multivariate Analysis Techniques Maps Multivariate data into a new space whose axes are oriented in a way that best represents the data’s total variance In principal component space: - The first component (PC1): largest possible fraction of the variance in the data set. - PC2: the next largest fractions of the variance  Cluster together in groups that are well separated in some parameter space

SMASSII Taxonomy: spectral slope A.Extracted & calibrated spectrum B.Smoothing spline fit C.Linear least squares fit  slope parameter  D.Residual spectrum after division by the slope function r i : The relative reflectance at each channel I : The wavelength of the channel in microns  : The slope of the fitted line (unity at 0.55  m) Bus & Binzel 2002

SMASSII Taxonomy: PC 1.Spectra are essentially linear or featureless 2.Spectra contain a 1-  m absorption feature The two different loci corresponds to spectra with and without a 1-  m silicate absorption feature PC1  Slope  remove PC2  PC2’ PC3  PC3’ Bus & Binzel 2002

SMASSII Taxonomy: separating the spectra Bus & Binzel 2002

SMASSII Taxonomy: S-, C-, X-complex spectra Bus & Binzel 2002

SMASSII Taxonomy: comparison & distribution Bus & Binzel 2002

SMASSII Taxonomy: Result Table Bus & Binzel 2002

SMASSII Taxonomy: description Bus et al. 2002

Cont’d Bus et al. 2002

SMASSII Taxonomy: drawbacks  Can be cumbersome for newly observed asteroids  Allow for the classification of individual objects  The classification assigned to an asteroid is only as good as the observational data Variations in spectrum may change the taxonomic label

TNOs Centaurs TNOs & Centaurs Taxonomy (1) Lazzarin et al. 2003

TNOs & Centaurs Taxonomy (2) Lazzarin et al. 2003

NEAs Taxonomy (1) Binzel et al. 2002

NEAs Taxonomy (2) Binzel et al. 2002

Near-Infrared Spectroscopy NIR: ~1 – 4  m contains absorption bands that are fundamental to studies of mineralogy (Gaffey et al. 1989)  Hodapp (2000): high-quality asteroid spectra out to 2.5  m and beyond  Rayner et al. (1998): low- to medium-resolution NIR spectrograph & imager (SpeX) in IRTF oData calibration is complicated oScaling telluric features a model of atmospheric transmission (ATRAN, Lord 1992)

Visible & NIR Spectroscopy  0.7 – 2.5  m: silicate minerals (pyroxenes, olivines and plagioclase) Absorption bands near 1 & 2  m  2.5 – 3.5  m: hydrated minerals (bound water and structural OH) Absorption bands centered near 3  m

SMASSII Taxonomy: spectra Bus & Binzel 2002