© Buddy Freeman, 2015Probability. Segment 2 Outline  Basic Probability  Probability Distributions.

Slides:



Advertisements
Similar presentations
© 2003 Prentice-Hall, Inc.Chap 4-1 Basic Probability IE 440 PROCESS IMPROVEMENT THROUGH PLANNED EXPERIMENTATION Dr. Xueping Li University of Tennessee.
Advertisements

Chapter 2 Probability. 2.1 Sample Spaces and Events.
Probability Theory Part 1: Basic Concepts. Sample Space - Events  Sample Point The outcome of a random experiment  Sample Space S The set of all possible.
© 2002 Prentice-Hall, Inc.Chap 4-1 Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions.
Chapter 3 Probability.
Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events
Business and Economics 7th Edition
Probability Probability Principles of EngineeringTM
Chapter 4 Probability.
Chapter 4 Basic Probability
Chapter Two Probability. Probability Definitions Experiment: Process that generates observations. Sample Space: Set of all possible outcomes of an experiment.
Chap 4-1 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 4 Probability.
Chapter 4 Basic Probability
PROBABILITY (6MTCOAE205) Chapter 2 Probability.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 4-2 Basic Concepts of Probability.
Probability Rules l Rule 1. The probability of any event (A) is a number between zero and one. 0 < P(A) < 1.
Lecture II.  Using the example from Birenens Chapter 1: Assume we are interested in the game Texas lotto (similar to Florida lotto).  In this game,
Chapter 4 Probability Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Probability Chapter 3. § 3.1 Basic Concepts of Probability.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 2 Probability.
Chapter 4 Probability See.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
10/1/20151 Math a Sample Space, Events, and Probabilities of Events.
Chapter 8 Probability Section R Review. 2 Barnett/Ziegler/Byleen Finite Mathematics 12e Review for Chapter 8 Important Terms, Symbols, Concepts  8.1.
© 2003 Prentice-Hall, Inc.Chap 4-1 Business Statistics: A First Course (3 rd Edition) Chapter 4 Basic Probability.
“PROBABILITY” Some important terms Event: An event is one or more of the possible outcomes of an activity. When we toss a coin there are two possibilities,
Theory of Probability Statistics for Business and Economics.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
AP Statistics Chapter 6 Notes. Probability Terms Random: Individual outcomes are uncertain, but there is a predictable distribution of outcomes in the.
Engineering Probability and Statistics Dr. Leonore Findsen Department of Statistics.
Introduction to Probability  Probability is a numerical measure of the likelihood that an event will occur.  Probability values are always assigned on.
Probability & Statistics I IE 254 Exam I - Reminder  Reminder: Test 1 - June 21 (see syllabus) Chapters 1, 2, Appendix BI  HW Chapter 1 due Monday at.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Slide 15-1 Copyright © 2004 Pearson Education, Inc.
Chapter 4 Probability ©. Sample Space sample space.S The possible outcomes of a random experiment are called the basic outcomes, and the set of all basic.
Computer Performance Modeling Dirk Grunwald Spring ‘96 Jain, Chapter 12 Summarizing Data With Statistics.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin A Survey of Probability Concepts Chapter 5.
Probability is a measure of the likelihood of a random phenomenon or chance behavior. Probability describes the long-term proportion with which a certain.
PROBABILITY, PROBABILITY RULES, AND CONDITIONAL PROBABILITY
Probability You’ll probably like it!. Probability Definitions Probability assignment Complement, union, intersection of events Conditional probability.
Probability: Terminology  Sample Space  Set of all possible outcomes of a random experiment.  Random Experiment  Any activity resulting in uncertain.
Probability Rules In the following sections, we will transition from looking at the probability of one event to the probability of multiple events (compound.
Fall 2002Biostat Probability Probability - meaning 1) classical 2) frequentist 3) subjective (personal) Sample space, events Mutually exclusive,
BIA 2610 – Statistical Methods
Probability. What is probability? Probability discusses the likelihood or chance of something happening. For instance, -- the probability of it raining.
+ Chapter 5 Overview 5.1 Introducing Probability 5.2 Combining Events 5.3 Conditional Probability 5.4 Counting Methods 1.
Introduction Remember that probability is a number from 0 to 1 inclusive or a percent from 0% to 100% inclusive that indicates how likely an event is to.
4-3 Addition Rule This section presents the addition rule as a device for finding probabilities that can be expressed as P(A or B), the probability that.
1 Chapter 15 Probability Rules. 2 Recall That… For any random phenomenon, each trial generates an outcome. An event is any set or collection of outcomes.
Probability. Randomness When we produce data by randomized procedures, the laws of probability answer the question, “What would happen if we did this.
Chapter 2: Probability. Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance.
STATISTICS 6.0 Conditional Probabilities “Conditional Probabilities”
BUSA Probability. Probability – the bedrock of randomness Definitions Random experiment – observing the close of the NYSE and the Nasdaq Sample.
Welcome to MM207 Unit 3 Seminar Dr. Bob Probability and Excel 1.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
PROBABILITY 1. Basic Terminology 2 Probability 3  Probability is the numerical measure of the likelihood that an event will occur  The probability.
Statistics for Managers 5th Edition
Sample Spaces Collection of all possible outcomes
Math a - Sample Space - Events - Definition of Probabilities
Basic Business Statistics (8th Edition)
Chapter 3 Probability.
Chapter 4 Probability.
Business Statistics Topic 4
Statistics for 8th Edition Chapter 3 Probability
Chapter 3 Probability.
Welcome to the wonderful world of Probability
Elementary Statistics 8th Edition
Probability Notes Math 309.
Probability Rules Rule 1.
Presentation transcript:

© Buddy Freeman, 2015Probability

Segment 2 Outline  Basic Probability  Probability Distributions

© Buddy Freeman, 2015 Segment 2 Outline  Basic Probability  Probability Distributions Concepts of Probability Definitions Notation and Properties Complement Mutually Exclusive Collectively Exhaustive Addition Rules Conditional Probability Statistical Independence Multiplication Rules Discrete Probability Distributions General Concepts Specific Discrete Probability Distributions Hypergeometric Binomial Poisson Continuous Probability Distribution Normal

© Buddy Freeman, 2015 Concepts of probability 1) Classical - based on logic. 2) Relative Frequency - based on proportions. 3) Subjective - based on intuition and experience. 1) and 2) are quantitatively based and are emphasized here.

© Buddy Freeman, 2015 D E F I N I T I O N S Experiment: The experiment is the activity (process) that generates the possible outcomes (elements). It is what it is defined to be. Sample space: The set of all possible outcomes (elements) of the experiment. Event: An event is a subset of the sample space. An event contains zero or more of the outcomes of an experiment. Null event: The null event is the event with no outcomes. Certain (Sure) event: The event equal to the sample space.

© Buddy Freeman, 2015 Notation and Properties P(E): P(E) stands for the probability of event E. P(E) = (the number of outcomes in event E) (the number of outcomes in the sample space) P(E) = 0 iff E is the null event. P(E) = 1 iff E is equivalent to the sample space. For all events E, 0  P(E)  1.

© Buddy Freeman, 2015COMPLEMENT _ Complement: The complement of event E is denoted E. _ E is the set of all outcomes in the sample space that are NOT in event E. _ _ _ P(E) + P(E) = 1; P(E) = 1 - P(E); P(E) = 1 - P(E).

© Buddy Freeman, 2015 More Definitions Mutually exclusive: Two events, A and B, are mutually exclusive if they have no outcomes in common. (disjoint) Collectively exhaustive: A set of events is collectively exhaustive if it "fills up" ("covers") the sample space. Another way to define it is that the union of the events in the set contains the sample space. (A or B): The event that consists of all outcomes in event A, event B, or in both events A and B. (A and B): The event that consists only of the outcomes in event A that are also in event B. P(A and B) is sometimes called the joint probability of A and B.

© Buddy Freeman, 2015 Addition Rules General Addition Rule: Given any two events, A and B, P(A or B) = P(A) + P(B) - P(A and B). Special Addition Rule: Given two events, A and B, that are mutually exclusive P(A or B) = P(A) + P(B). (If A and B are mutually exclusive then the event (A and B) is null and P(null) = 0.) AB AB

© Buddy Freeman, 2015 Conditional Probability and Statistical Independence Conditional Probability: The probability of A given B is denoted P(A|B). If we assume that the event B has occurred, then what is the P(A) under this assumption? Formally, P(A|B) = P(A and B) where B is not null. P(B) Statistical Independence: Two events, A and B, are statistically independent iff P(A|B) = P(A). Equivalent definitions include: P(B|A) = P(B) or P(A and B) = P(A)  P(B).

© Buddy Freeman, 2015 Multiplication Rules General Multiplication Rule: Given two nonnull events, A and B, P(A and B) = P(A|B)  P(B) [= P(B and A) = P(B|A)  P(A)]. Special Multiplication Rule: Given two statistically independent events, A and B, P(A and B) = P(A)  P(B).

© Buddy Freeman, 2015 EXAMPLE PROBLEMS Experiment: Draw 1 card from a well-shuffled deck of 52 ordinary playing cards. (1) What is the probability that it is a Queen? (2) What is the probability that it is the Queen of Hearts (i.e. it is a Queen AND a Heart)? (3) What is the probability that it is a Queen OR a Heart? (4) If the selected card is a Heart, what is the probability that it is a Queen?

© Buddy Freeman, 2015 Problems continued... (5) Are the two events: drawing a Queen, and drawing a Heart mutually exclusive? (6) Are the two events: drawing a Queen, and drawing a Heart collectively exhaustive? (7) Are the two events: drawing a Queen, and drawing a Heart statistically independent?

© Buddy Freeman, 2015 More Example Problems Experiment: Draw 2 cards successively and without replacement from a well-shuffled deck of 52 ordinary playing cards. 1. What the the probability that both are Hearts? 2. If the first card is a Heart, what the the probability that the second card is a Queen? 3. What is the probability that the second card is a Queen? PROBLEM Prove or disprove: The two events: first card is a Heart and second card is a Queen are statistically independent.

© Buddy Freeman, 2015 Example Problem Handouts

© Buddy Freeman, 2015 Conditional Probability (e.g. Bayes Rule) Problems

© Buddy Freeman, 2015 Example 1 1. The BOZO steroid test was developed at DIZZY DEAN CHEMICALS, Inc.. The company claims that the BOZO steroid test is more than 90% effective both ways. If a subject has been using steroids, the test will indicate a positive result 92% of the time. If the subject does not use steroids, the test will indicate a negative result 95% of the time. It is estimated that the proportion of steroid users in the population is.002. If a subject is randomly selected and tests positive, what is the probability that this subject has been using steroids?

© Buddy Freeman, 2015 Example 2 2. A maker of personal computers buys memory chips through three different suppliers which shall be referred to as A, B, and C. Twenty percent of their supply comes from A, fifty percent from B, and the remainder from C. It is known that the proportion of defective chips produced by the three suppliers are.0010,.0003, and.0007, respectively. (a) If one of the memory chips is defective, which supplier is most likely to have supplied it? (b) What is the probability of a defective chip?

© Buddy Freeman, 2015Factorials Factorials: 0! = 1; 1! = 1; 2! = 2  1; 3! = 3  2  1; in general n! = n(n-1)(n-2)...  3  2  1

© Buddy Freeman, 2015 Counting Rules 1) When order matters, the following are useful. (a) If it can be done n 1 ways at the first trial, n 2 ways at the second trial,..., and n m ways at the m th trial the total number of ways is n 1  n 2 ...  n m. (b) When sampling without replacement from n distinct objects we can select m (where m  n) objects n!/(n-m)! ways. These are commonly referred to as permutations of size m taken from a set of size n (denoted n P m ). 2) When order does not matter, you divide by the number of ways that you can order the m objects that you are selecting. Thus, when sampling without replacement from n distinct objects we can select m (where m  n) objects n!/[(n-m)!(m)!] ways. These are commonly referred to as combinations of size m taken from a set of size n.