NMR investigations of Leggett-Garg Inequality

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 Quantum Computing.
Advertisements

Quantum Correlations in Nuclear Spin Ensembles T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Macroscopic Realism Emerging from Quantum Physics Johannes Kofler and Časlav Brukner 15th UK and European Meeting on the Foundations of Physics University.
An Introduction to Parahydrogen Projects in the Pines Lab David Trease Special Topics... March Chip Crawford.
Umesh V. Vazirani U. C. Berkeley Quantum Algorithms: a survey.
Long-lived spin coherence in silicon with electrical readout
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
NMR Quantum Information Processing and Entanglement R.Laflamme, et al. presented by D. Motter.
Quantenelektronik 1 Application of the impedance measurement technique for demonstration of an adiabatic quantum algorithm. M. Grajcar, Institute for Physical.
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Experimental Realization of Shor’s Quantum Factoring Algorithm ‡ ‡ Vandersypen L.M.K, et al, Nature, v.414, pp. 883 – 887 (2001) M. Steffen 1,2,3, L.M.K.
Simulating Physical Systems by Quantum Computers J. E. Gubernatis Theoretical Division Los Alamos National Laboratory.
STUDY OF CORRELATIONS AND NON-MARKOVIANITY IN DEPHASING OPEN QUANTUM SYSTEMS Università degli Studi di Milano Giacomo GUARNIERI Supervisor: Bassano VACCHINI.
Quantum violation of macroscopic realism and the transition to classical physics Faculty of Physics University of Vienna, Austria Institute for Quantum.
Necessary and sufficient conditions for macroscopic realism from quantum mechanics Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Tony Hyun Kim (Partner: Connor McEntee) 11/17/ MW2-5 Prof. Roland.
Liquid State NMR Quantum Computing
Quantum Like Decision Theory Angel’s Meeting MdP - May, 28 th 2010 O.G. Zabaleta, C.M. Arizmendi.
Reversing chaos Boris Fine Skolkovo Institute of Science and Technology University of Heidelberg.
From Flipping Qubits to Programmable Quantum Processors Drinking party Budmerice, 1 st May 2003 Vladimír Bužek, Mário Ziman, Mark Hillery, Reinhard Werner,
Dynamical decoupling in solids
Quantum, classical & coarse-grained measurements Johannes Kofler and Časlav Brukner Faculty of Physics University of Vienna, Austria Institute for Quantum.
Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences,
University of Gdańsk, Poland
Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
Aditi Sen (De) Harish-Chandra Research Institute, India.
Chiranjib Mitra IISER-Kolkata
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
IWEPNM 2007, Kirchberg Coworkers Principles of Quantum Computing Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany A.Heidebrecht, S. Krämer,
Quantum Control Synthesizing Robust Gates T. S. Mahesh
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Chapter 6 Product Operator Product operator is a complete and rigorous quantum mechanical description of NMR experiments and is most suited in describing.
David G. Cory Department of Nuclear Engineering Massachusetts Institute of Technology Using Nuclear Spins for Quantum Information Processing and Quantum.
Quantum Computing – Part 2 Amanda Denton – Evil Dictator Jesse Millikan – Mad Scientist Lee Ballard – Some Guy With A Beard September 30, 2001.
A condition for macroscopic realism beyond the Leggett-Garg inequalities APS March Meeting Boston, USA, March 1 st 2012 Johannes Kofler 1 and Časlav Brukner.
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013.
Ancilla-Assisted Quantum Information Processing Indian Institute of Science Education and Research, Pune T. S. Mahesh.
Use of Genetic Algorithm for Quantum Information Processing by NMR V.S. Manu and Anil Kumar Centre for quantum Information and Quantum Computing Department.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
“Experimental quantum computers” or, the secret life of experimental physicists 1 – Qubits in context Hideo Mabuchi, Caltech Physics and Control & Dynamical.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Quantum Computing and Nuclear Magnetic Resonance Jonathan Jones EPS-12, Budapest, August Oxford Centre for Quantum Computation
Efficient measure of scalability Cecilia López, Benjamin Lévi, Joseph Emerson, David Cory Department of Nuclear Science & Engineering, Massachusetts Institute.
Bulk Spin Resonance Quantum Information Processing Yael Maguire Physics and Media Group (Prof. Neil Gershenfeld) MIT Media Lab ACAT 2000 Fermi National.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Bell and Leggett-Garg tests of local and macroscopic realism Theory Colloquium Johannes Gutenberg University Mainz, Germany 13 June 2013 Johannes Kofler.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Anil Kumar Department of Physics and NMR Research Centre Indian Institute of Science, Bangalore QIPA-15-HRI-December 2015 Recent Developments in.
Fine-grained Uncertainty Relations and Quantum Steering Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators: T. Pramanik.
ON THE STRUCTURE OF A WORLD (WHICH MAY BE) DESCRIBED BY QUANTUM MECHANICS. A.WHAT DO WE KNOW ON THE BASIS OF ALREADY PERFORMED EXPERIMENTS? A A’ ~ S B.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University,
Using Neutrino Oscillations to Test the Foundations of Quantum Mechanics David Kaiser.
No Fine theorem for macroscopic realism
Quantum Phase Transition of Light: A Renormalization Group Study
Classical World because of Quantum Physics
Quantum Correlations in Nuclear Spin Ensembles
Presentation transcript:

NMR investigations of Leggett-Garg Inequality V. Athalye2, H. Katiyar1, Soumya S. Roy1, Abhishek Shukla1, R. Koteswara Rao3 T. S. Mahesh1 1IISER-Pune, 2Cummins College, Pune, 3IISc, Bangalore Acknowledgements: Usha Devi1, K. Rajagopal2, Anil Kumar3, and G. C. Knee4 1 Bangalore University, 2 HRI & Inspire Inst., Virginia, USA, 3 IISc, Bangalore 4 University of Oxford

Plan NMR as a quantum testbed Correlation Leggett-Garg Inequality Entropic Leggett-Garg Inequality Summary Athalye, Roy, TSM, PRL 2011.  Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Nuclear Spins Many nuclei have ‘spin angular momentum’ and ‘magnetic moment’ ħgB0 B0 |0 |1 |0 + b |1 Coherent Superposition

Nuclear Magnetic Resonance (NMR) Spectrometer Sample: 1015 spins RF coil Pulse/Detect H0 H1cos(wt) ~ Superconducting coil

Pseudopure State p1 p0 p1 p0 |0 |1  B0 = 1   ~ 105 at 300 K, 12 T E kT  = 1015 spins

Pseudopure State p1 p0 p1 p0 |0 |1  B0  =(1-  )1/2+|00|  =(1-  )1/2+|00| pseudopure p1 p0 = 1   ~ 105 at 300 K, 12 T E kT  = 1015 spins

Pseudopure State p1 p0 p1 p0 |0 |1  RF B0  =(1-  )1/2+|00|  =(1-  )1/2+|00|  =(1-  )1/2+|++| pseudopure p1 p0 = 1   ~ 105 at 300 K, 12 T E kT  = 1015 spins

Resources parahydrogens (Jones &Anwar, PRA 2004) q-transducer (Cory et al, PRA 2007) Nonseparable State ~ pure states Resource: Entanglement  > 1/3 2-qubit register  =(1-  )1/2+|00| UW UW   1/3 Cory 1997 Chuang 1997 pseudopure states Separable State Resource: Discord (in units of 2) Hemant, Roy, TSM, A. Patel, PRA2012

NMR systems useful? Pseudopure |0000000 Preparation (scalability?) 7-qubit NMR register Shor’s algorithm No entanglement finite discord Chuang, Nature 2002 15 = 3 x 5 Open question: Is discord sufficient resource for quantum computation ?

NMR system as a quantum testbed Geometric Phases (Suter, 1988) Electromagnetically Induced Transparency (Murali, 2004) Contextuality (Laflamme, 2010) Delayed choice (Roy, 2012) Born’s rule (Laflamme, 2012) Why NMR? Long life-times of quantum coherence Unmatched control on spin dynamics

Correlation LGI (CLGI)

Sir Anthony James Leggett Leggett-Garg (1985) Sir Anthony James Leggett Uni. of Illinois at UC  Prof. Anupam Garg Northwestern University, Chicago How to distinguish Quantum behavior From Classical ? A. J. Leggett and A. Garg, PRL 54, 857 (1985) Macrorealism “A macroscopic object, which has available to it two or more macroscopically distinct states, is at any given time in a definite one of those states.” Non-invasive measurability “It is possible in principle to determine which of these states the system is in without any effect on the state itself or on the subsequent system dynamics.”

LGI studies in various systems N. Lambert et al, PRB 2001 J.-S. Xu et al., Sci. Rep 2011 Palacios-Laloy et al., Nature Phys. 2010 M. E. Goggin et al., PNAS USA 2011 J. Dressel et al., PRL 2011 M. Souza et al, NJP 2011 Roy et al, PRL 2011 G. C. Knee et al., Nat. Commun. 2012 C. Emary et al, PRB 2012 Y. Suzuki et al, NJP 2012 Hemant et al, arXiv 2012

Leggett-Garg (1985) Consider a system with a dynamic dichotomic observable Q(t) Dichotomic : Q(t) =  1 at any given time time Q1 Q2 Q3 t2 t3 . . . t1 A. J. Leggett and A. Garg, PRL 54, 857 (1985) PhD Thesis, Johannes Kofler, 2004

 Two-Time Correlation Coefficient (TTCC) time Q1 t = 0 Q2 Q3 t . . . Temporal correlation: Cij =  Qi Qj  = Qi(r) Qj(r)  N 1 r = 1 = pij+(+1) + pij(1) r  over an ensemble Ensemble Time ensemble (sequential) Spatial ensemble (parallel) 1  Cij  1 Cij = 1  Perfectly correlated Cij =1  Perfectly anti-correlated Cij = 0  No correlation

LG string with 3 measurements time Q1 t = 0 Q2 Q3 t 2t K3 = C12 + C23  C13 K3 = Q1Q2 + Q2Q3  Q1Q3 Q1 Q2 Q3 Q1Q2+Q2Q3-Q1Q3 1 1 1 1 1 1 -1 1 1 -1 1 -3 1 -1 -1 1 -1 1 1 1 -1 1 -1 -3 -1 -1 1 1 -1 -1 -1 1 K3 time Macrorealism (classical) 3  K3  1 Leggett-Garg Inequality (LGI)

TTCC of a spin ½ particle Consider : A spin ½ particle Hamiltonian : H = ½ z Maximally mixed initial State : 0 = ½ 1 Dynamic observable: x  eigenvalues  1 (Dichotomic ) Time Q1 t = 0 Q2 Q3 t 2t C12 = x(0)x(t) =  x e-iHt x eiHt  = x [xcos(t) + ysin(t)]   C12 = cos(t) Similarly, C23 = cos(t) and C13 = cos(2t) PhD Thesis, Johannes Kofler, 2004

Quantum States Violate LGI: K3 with Spin ½ time Q1 t = 0 Q2 Q3 t 2t K3 = C12 + C23  C13 = 2cos(t)  cos(2t) K3 t 2  3 Macrorealism (classical) Quantum !! 4 (/3,1.5) Maxima (1.5) @ cos(t) =1/2 No violation !

Quantum States Violate LGI: K4 with Spin ½ time Q1 t = 0 Q2 Q3 t 2t 3t Q4 K4 = C12 + C23 + C34  C14 = 3cos(t)  cos(3t) K4 Macrorealism (classical) Quantum !! t 2  3 4 (/4,22) (3/4,22) Extrema (22) @ cos(2t) =0

Evaluating K3 K3 = C12 + C23  C13 Hamiltonian : H = ½ z t = 0 t x↗ time ENSEMBLE x(0)x(t) = C12 x(t)x(2t) = C23 x(0)x(2t) = C13 0 0 0

Evaluating K4 K4 = C12 + C23 + C34 C14 t = 0 t 2t time 3t ENSEMBLE x↗ time 3t ENSEMBLE x(0)x(t) = C12 x(t)x(2t) = C23 x(0)x(3t) = C14 x(2t)x(3t) = C34 Joint Expectation Value Hamiltonian : H = ½ z 0 0 0 0

Moussa Protocol Joint Expectation Value AB Target qubit (T) Dichotomic observables  Target qubit (T) Probe qubit (P) A B x↗ |+  AB O. Moussa et al, PRL,104, 160501 (2010)

Sample 13CHCl3 (in DMSO) Target: 13C Probe: 1H Resonance Offset: 100 Hz 0 Hz T1 (IR) 5.5 s 4.1 s T2 (CPMG) 0.8 s 4.0 s V. Athalye, S. S. Roy, and TSM,  Phys. Rev. Lett. 107, 130402 (2011). 

Experiment – pulse sequence 1/2 0 = Ax Aref 1H 90x PFG Ax(t)+i Ay(t) Ax(t) = cos(2tij) Ay(t) = sin(2tij) Ax(t)  x(t) 13C  = V. Athalye, S. S. Roy, and TSM,  Phys. Rev. Lett. 107, 130402 (2011). 

Experiment – Evaluating K3 time Q1 t = 0 Q2 Q3 t 2t t K3 = C12 + C23  C13 = 2cos(t)  cos(2t) Error estimate:  0.05 V. Athalye, S. S. Roy, and TSM,  Phys. Rev. Lett. 107, 130402 (2011).  ( = 2100)

Experiment – Evaluating K3 50 100 150 200 250 300 t (ms) LGI violated !! (Quantum) LGI satisfied 165 ms Decay constant of K3 = 288 ms V. Athalye, S. S. Roy, and TSM, Phys. Rev. Lett. 107, 130402 (2011). 

Experiment – Evaluating K4 time Q1 t = 0 Q2 Q3 t 2t 3t Q4 K4 = C12 + C23 + C34  C14 = 3cos(t)  cos(3t) Error estimate:  0.05 Decay constant of K4 = 324 ms V. Athalye, S. S. Roy, and TSM,  Phys. Rev. Lett. 107, 130402 (2011).  ( = 2100)

Entropic LGI (ELGI) A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal, arXiv: 1208.4491 [quant-ph]

System time Q1 Q2 Q3 t2 t3 . . . t1 System state: 1/2 Dynamical observable : Sz(t) = Ut Sz Ut† Time Evolution: Ut = exp(iSxt) A. R. Usha Devi et al, arXiv: 1208.4491 [quant-ph]

ELGI bound time Q1 Q2 Q3 t2 t3 . . . Information Deficit: t1   A. R. Usha Devi et al, arXiv: 1208.4491 [quant-ph]

Extracting Probabilities time Qk . . . Single-event: tk k For S = 1/2 P(0) = ½ P(1) = ½ Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Extracting Probabilities time Qj . . . Qi Two-time joint: ti tj Invasive j

Extracting Probabilities time Qj . . . Qi Two-time joint: ti tj

Extracting Probabilities time Qj . . . Qi Two-time joint: ti tj Non-Invasive Measurement (NIM) P(0,qj) P(1,qj)

System Two-time joint probability ancilla system H system Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Two-time joint probabilities Q1 Q2 Q3 t2 t3 t1 P(q1,q2) P(q1,q3) Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Information Deficit CNOT Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph] CNOT

Information Deficit CNOT Anti CNOT Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph] CNOT Anti CNOT

Information Deficit CNOT Anti CNOT NIM Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph] CNOT Anti CNOT NIM

Legitimate Grand Probability A. R. Usha Devi et al, arXiv: 1208.4491 [quant-ph] time Q1 Q2 Q3 t2 t3 t1 Classical Probability Theory: Marginals Grand P(q1,q2)  P’(q1,q2) = P(q1,q2,q3)  q3 P(q1,q3)  P’(q1,q3) = P(q1,q2,q3)  q2 P(q2,q3)  P’(q2,q3) = P(q1,q2,q3)  q1

Extracting Grand Probability Three-time joint: Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Illegitimate Joint Probability P(q1,q2,q3) is illegitimate !!  Violation of Entropic LGI Hemant, Abhishek, Koteswar, TSM, arXiv: 1210.1970 [quant-ph]

Summary NMR spin-system violated correlation LGI for short time scales indicating the quantumness of the system. The gradual decoherence lead to the ultimate satisfaction of correlation LGI. NMR spins systems also violated entropic LGI in the expected time interval The experimental grand probability P(q1,q2,q3) could not generate the experimental marginal probability P(q1,q3) supporting the theoretical prediction. Thank You !!