Diffraction vs. Interference

Slides:



Advertisements
Similar presentations
24.6 Diffraction Huygen’s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line.
Advertisements

Lecture 16 Diffraction Chp. 37
1308 E&M Diffraction – light as a wave Examples of wave diffraction: Water waves diffract through a small opening in the dam. Sound waves diffract through.
Chapter 35 Diffraction and Polarization
The waves spread out from the opening!
Diffraction and Polarization
Topic 11.3 Diffraction.
last dance Chapter 26 – diffraction – part ii
Diffraction of Light Waves
Polarization of Light Waves
Chapter 24 Wave Optics.
Chapter 24 Wave Optics.
Diffraction See Chapter 10 of Hecht.
IVA. Electromagnetic Waves and Optics
PHY 1371Dr. Jie Zou1 Chapter 38 Diffraction and Polarization.
Interference & Diffraction
Physics for Scientists and Engineers II, Summer Semester Lecture 28: August 3 rd 2009 Physics for Scientists and Engineers II.
Physics 1402: Lecture 35 Today’s Agenda Announcements: –Midterm 2: graded soon … »solutions –Homework 09: Wednesday December 9 Optics –Diffraction »Introduction.
Physics 52 - Heat and Optics Dr. Joseph F. Becker Physics Department San Jose State University © 2005 J. F. Becker.
Physics 1502: Lecture 34 Today’s Agenda Announcements: –Midterm 2: graded soon … –Homework 09: Friday December 4 Optics –Interference –Diffraction »Introduction.
1 Chapter 10 Diffraction March 9, 11 Fraunhofer diffraction: The single slit 10.1 Preliminary considerations Diffraction: The deviation of light from propagation.
Chapter 25: Interference and Diffraction
Chapter 24 Wave Optics.
9.12 Diffraction grating • Order of diffraction
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
3: Interference, Diffraction and Polarization
The wave nature of light Interference Diffraction Polarization
Chapter 27 Interference and the Wave Nature of Light.
Interference and the Wave Nature of Light
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Diffraction Patterns and Polarization
Lecture 25 Diffraction of Light Diffraction Grating Polarization.
Chapter 24 Wave Optics. General Physics Review – waves T=1/f period, frequency T=1/f period, frequency v = f velocity, wavelength v = f velocity, wavelength.
Principal maxima become sharper Increases the contrast between the principal maxima and the subsidiary maxima GRATINGS: Why Add More Slits?

Chapter 24 Wave Optics. The particle nature of light was the basis for ray (geometric) optics The wave nature of light is needed to explain various phenomena.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
Physics 1C Lecture 27B.
Interference in Thin Films, final
The waves spread out from the opening!
Chapter 38: Diffraction and Polarization  For a single opening in a barrier, we might expect that a plane wave (light beam) would produce a bright spot.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Resolution Limits for Single-Slits and Circular Apertures  Single source  Two sources.
1© Manhattan Press (H.K.) Ltd. Young’s double slit experiment Young’s double slit experiment 9.10 Interference of light waves Relationship between x,,
Unit 12: Part 1 Physical Optics: The Wave Nature of Light.
1 Fraunhofer Diffraction: Single, multiple slit(s) & Circular aperture Fri. Nov. 22, 2002.
Physics 203/204 6: Diffraction and Polarization Single Slit Diffraction Diffraction Grating Diffraction by Crystals Polarization of Light Waves.
The Wave Nature of Light
Wave nature of light Light is an electromagnetic wave. EM waves are those waves in which there are sinusoidal variation of electric and magnetic fields.
Option A - Wave Phenomena Standing Waves, Resonance, Doppler Effect, Diffraction, Resolution, Polarization.
Chapter 38 Diffraction Patterns and Polarization.
Chapter 38 Diffraction Patterns and Polarization.
Announcements HW set 10 due this week; covers Ch (skip 24.8) and Office hours: Prof. Kumar’s Tea and Cookies 5-6 pm today My office hours.
Physics 1202: Lecture 26 Today’s Agenda Announcements: –Midterm 2: Friday Nov. 6… –Chap. 18, 19, 20, and 21 No HW for this week (midterm)No HW for this.
Wave Optics Light interferes constructively and destructively just as mechanical waves do. However due to the shortness of the wave length (4-7 x
Chapter 38: Diffraction Patterns and Polarization.
Physics 1202: Lecture 28 Today’s Agenda Announcements: –Midterm 2: solutions HW 8 this FridayHW 8 this Friday Diffraction –Review Polarization –Reflection.
Copyright © 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference.
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
Diffraction and Coherence 16-2 and CAN WAVES BEND AROUND CORNERS? ·Can you hear me when I stand around the corner and yell? ·What about light? Think.
Phys102 Lecture 26, 27, 28 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution.
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Interference Requirements
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
Chapter 10 Diffraction March 20 Fraunhofer diffraction: the single slit 10.1 Preliminary considerations Diffraction: The deviation of light from propagation.
Diffraction vs. Interference
The waves spread out from the opening!
Presentation transcript:

Diffraction vs. Interference Both involve superposition of coherent light Custom Interference – only a few waves Diffraction – large number of waves Fresnel correction to Huygens Principle: Every unobstructed point of of a wavefront, at a given instant, serves as a source of spherical secondary wavelets (with the same frequency of that of the primary wave). The amplitude of the optical field is the superposition of all these wavelets (considering their amplitudes and relative phases)

Fraunhofer vs. Fresnel Fresnel – Diffraction is occurring near the aperture. a.k.a “near field diffraction” Initially the fringe pattern looks like the aperture but then the pattern changes as the distance from the aperture increases. Fraunhofer – Diffraction occurs far from the aperture. a.k.a “far field diffraction” In this region the fringe pattern remains constant, changing only in size as distance from the aperture increases.

Diffraction by edges

Figure 38.2 Light from a small source passes by the edge of an opaque object and continues on to a screen. A diffraction pattern consisting of bright and dark fringes appears on the screen in the region above the edge of the object. Fig 38-2, p.1207

Single-Slit Diffraction The finite width of slits is the basis for understanding Fraunhofer diffraction According to Huygens’s principle, each portion of the slit acts as a source of light waves Therefore, light from one portion of the slit can interfere with light from another portion

Diffraction by a single slit Minima: m = 1,2,3,…

Diffraction Pattern, Single Slit The diffraction pattern consists of the central maximum and a series of secondary maxima and minima The pattern is similar to an interference pattern

Intensity The light intensity at a point on the screen is proportional to the square of ER: Imax is the intensity at θ = 0 This is the central maximum

Combination of interference and diffraction for 2 slits

Final Exam Problem 48 Light of wavelength 632 nm is incident on a single slit. The distance from the slit to a screen is 3 m. If the distance from the first minimum on one side of the center of the diffraction pattern to the first minimum on the other side is 8 mm, the width of the slit is closest to 0.22 mm 0.31 mm 0.47 mm 0.59 mm 0.66 mm screen 3 m

The Square Aperture

Circular Aperture Airy Pattern

Circular apertures

Rayleigh resolution criteria

Rayleigh Criteria for Resolving Two Objects Overlapping images from two apertures are just resolved when the center of one Airy disk falls on the first minimum of the other.

Rayleigh resolution criteria

Resolution, Example Pluto and its moon, Charon Left: Earth-based telescope is blurred Right: Hubble Space Telescope clearly resolves the two objects

Final Exam Problem 49 A boat has lights on a mast that are 1 m apart. The dominant wavelength in the lights is 600 nm. The pupil in a person’s eye has an opening of 1 mm. For simplicity, we assume that the eye has a refractive index of 1. If the boat is closer, the person sees two lights on the mast. If the boat is farther away, the person sees only one light on the mast. The best value for the distance from the person to the boat is 1.4 km 1.2 km 2.0 km 1.6 km 1.8 km 1 m

Diffraction Grating Two slits Grating Maxima:

Final Exam Problem 50 A beam of light is incident on a diffraction grating that has 600 lines/mm. The second order maximum occurs at a distance 0.7 m from the center of a screen that is 1.0 m from the grating. The wavelength of light is closest to: 478 nm 613 nm 574 nm 589 nm 542 nm grating 0.7 m 1.0 m

Polarization “Linear” or “plane” polarization Vertically polarized Processes for accomplishing polarization: selective absorption reflection double refraction scattering Unpolarized? Horizontally polarized

Polarization by Selective Absorption The most common technique for polarizing light Uses a material that transmits waves whose electric field vectors lie in the plane parallel to a certain direction and absorbs waves whose electric field vectors are perpendicular to that direction

Polarizing Sheets – Selective absorption Law of Malus:

Polarization by reflection Brewster’s Angle:

Polarization by Double Refraction Unpolarized light splits into two plane-polarized rays The two rays are in mutual perpendicular directions Indicated by the dots and arrows

Polarization by Scattering, Rayleigh Scattering The horizontal part of the electric field vector in the incident wave causes the charges to vibrate horizontally The vertical part of the vector simultaneously causes them to vibrate vertically If the observer looks straight up, he sees light that is completely polarized in the horizontal direction

Final Exam Problem 37 When unpolarized light is passed through two polarizing filters in succession, its intensity is decreased by 80%. The angle, q, between the transmission axis of the filters is 78.5 degrees 63.4 degrees 26.6 degrees 36.9 degrees 50.8 degrees q I=0.2Io Polaroids

3. A screen is placed 50.0 cm from a single slit, which is illuminated with 690-nm light. If the distance between the first and third minima in the diffraction pattern is 3.00 mm, what is the width of the slit? 6. Light of wavelength 587.5 nm illuminates a single slit 0.750 mm in width. (a) At what distance from the slit should a screen be located if the first minimum in the diffraction pattern is to be 0.850 mm from the center of the principal maximum? (b) What is the width of the central maximum? 18. A binary star system in the constellation Orion has an angular interstellar separation of 1.00 × 10–5 rad. If λ = 500 nm, what is the smallest diameter the telescope can have to just resolve the two stars?

41. Plane-polarized light is incident on a single polarizing disk with the direction of E0 parallel to the direction of the transmission axis. Through what angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of (a) 3.00, (b) 5.00, (c) 10.0? 45. The critical angle for total internal reflection for sapphire surrounded by air is 34.4°. Calculate the polarizing angle for sapphire.