Image Warping Computational Photography Derek Hoiem, University of Illinois 09/27/11 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll.

Slides:



Advertisements
Similar presentations
CS 691 Computational Photography Instructor: Gianfranco Doretto Image Warping.
Advertisements

Computer Graphics Lecture 4 Geometry & Transformations.
Photo by Carl Warner.
2D Geometric Transformations
Lecture 11: Transformations CS4670/5760: Computer Vision Kavita Bala.
CS4670: Computer Vision Kavita Bala Lecture 10: Feature Matching and Transforms.
Image Warping : Computational Photography Alexei Efros, CMU, Fall 2006 Some slides from Steve Seitz
Lecture 8: Geometric transformations CS4670: Computer Vision Noah Snavely.
Image Warping : Computational Photography Alexei Efros, CMU, Fall 2008 Some slides from Steve Seitz
Image Warping : Computational Photography Alexei Efros, CMU, Fall 2005 Some slides from Steve Seitz
Lecture 6: Image transformations and alignment CS6670: Computer Vision Noah Snavely.
Lecture 9: Image alignment CS4670: Computer Vision Noah Snavely
Image Morphing : Computational Photography Alexei Efros, CMU, Fall 2005 © Alexey Tikhonov.
Lecture 6: Image Warping and Projection CS6670: Computer Vision Noah Snavely.
Image warping/morphing Digital Video Special Effects Fall /10/17 with slides by Y.Y. Chuang,Richard Szeliski, Steve Seitz and Alexei Efros.
Introduction to Computer Graphics CS 445 / 645 Lecture 5 Transformations Transformations M.C. Escher – Smaller and Smaller (1956)
Geometric Transformation-2D
Alignment and Object Instance Recognition Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/16/12.
Image Stitching Ali Farhadi CSE 455
CSE 185 Introduction to Computer Vision
Computer Vision - Fitting and Alignment
Image Warping (Szeliski 3.6.1) cs129: Computational Photography James Hays, Brown, Fall 2012 Slides from Alexei Efros and Steve Seitz
Multimedia Programming 06: Image Warping Departments of Digital Contents Sang Il Park.
Warping CSE 590 Computational Photography Tamara Berg.
CS559: Computer Graphics Lecture 6: Edge Detection, Image Compositing, and Warping Li Zhang Spring 2010.
Image Warping Computational Photography Derek Hoiem, University of Illinois 09/24/15 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll.
Image warping/morphing Digital Visual Effects Yung-Yu Chuang with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros.
Homogeneous Coordinates (Projective Space) Let be a point in Euclidean space Change to homogeneous coordinates: Defined up to scale: Can go back to non-homogeneous.
CSE 681 Review: Transformations. CSE 681 Transformations Modeling transformations build complex models by positioning (transforming) simple components.
Transformations Jehee Lee Seoul National University.
Image Warping Computational Photography Derek Hoiem, University of Illinois 09/23/10 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll.
Computational Photography Derek Hoiem, University of Illinois
Image Warping and Morphing cs195g: Computational Photography James Hays, Brown, Spring 2010 © Alexey Tikhonov.
Advanced Multimedia Warping & Morphing Tamara Berg.
Computer Vision - Fitting and Alignment (Slides borrowed from various presentations)
Image Morphing Computational Photography Derek Hoiem, University of Illinois 9/29/15 Many slides from Alyosha Efros.
Multimedia Programming 07: Image Warping Keyframe Animation Departments of Digital Contents Sang Il Park.
Affine Geometry.
Recap from Monday DCT and JPEG Point Processing Histogram Normalization Questions: JPEG compression levels Gamma correction.
Image Warping Many slides from Alyosha Efros + Steve Seitz + Derek oeim Photo by Sean Carroll.
Instructor: Mircea Nicolescu Lecture 9
CS559: Computer Graphics Lecture 7: Image Warping and Panorama Li Zhang Spring 2008 Most slides borrowed from Yungyu ChuangYungyu Chuang.
CS559: Computer Graphics Lecture 7: Image Warping and Morphing Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
4. Affine transformations. Reading Required:  Watt, Section 1.1. Further reading:  Foley, et al, Chapter  David F. Rogers and J. Alan Adams,
Lecture 14: Feature matching and Transforms CS4670/5670: Computer Vision Kavita Bala.
Lecture 15: Transforms and Alignment CS4670/5670: Computer Vision Kavita Bala.
Image Warping 2D Geometric Transformations
Modeling Transformation
Transformations. Modeling Transformations  Specify transformations for objects  Allows definitions of objects in own coordinate systems  Allows use.
Transformations University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 Tamara Munzner.
Computer Graphics Lecture 15 Fasih ur Rehman. Last Class Combining Transformations Affine versus Rigid body Transformations Homogenous Transformations.
Image warping/morphing Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/3/15 with slides by Richard Szeliski, Steve Seitz and Alexei Efros.
Prof. Adriana Kovashka University of Pittsburgh October 3, 2016
3. Transformation
University of Ioannina
Computational Photography Derek Hoiem, University of Illinois
Introduction to Computer Graphics CS 445 / 645
Computational Photography Derek Hoiem, University of Illinois
Homogeneous Coordinates (Projective Space)
Image Warping (Szeliski Sec 2.1.2)
Image Warping (Szeliski Sec 2.1.2)
Image Warping : Computational Photography
Recap from Friday Image Completion Synthesis Order Graph Cut Scene Completion.
Image Warping : Computational Photography
2D transformations (a.k.a. warping)
Image Warping (Szeliski Sec 2.1.2)
Transformations 2 University of British Columbia
Computational Photography Derek Hoiem, University of Illinois
Presentation transcript:

Image Warping Computational Photography Derek Hoiem, University of Illinois 09/27/11 Many slides from Alyosha Efros + Steve Seitz Photo by Sean Carroll

Administrative stuff Vote for class favorites for project 2 Next Tues: take photos – can I get a volunteer for photographer?

Last class: Gradient-domain editing Many image processing applications can be thought of as trying to manipulate gradients or intensities: – Contrast enhancement – Denoising – Poisson blending – HDR to RGB – Color to Gray – Recoloring – Texture transfer See Perez et al and GradientShop for many examples

Gradient-domain processing Saliency-based Sharpening

Gradient-domain processing Non-photorealistic rendering

Gradient-domain editing Creation of image = least squares problem in terms of: 1) pixel intensities; 2) differences of pixel intensities Least Squares Line Fit in 2 Dimensions Use Matlab least-squares solvers for numerically stable solution with sparse A

Poisson blending example A good blend should preserve gradients of source region without changing the background

Take-home questions 1) I am trying to blend this bear into this pool. What problems will I have if I use: a)Alpha compositing with feathering b)Laplacian pyramid blending c)Poisson editing? Lap. Pyramid Poisson Editing

Take-home questions 2) How would you make a sharpening filter using gradient domain processing? What are the constraints on the gradients and the intensities?

Next two classes Image warping and morphing – Global coordinate transformations – Meshes and triangulation – Texture mapping – Interpolation Applications – Morphing and transitions (project 4) – Panoramic stitching (project 5) – Many more

Image Transformations image filtering: change range of image g(x) = T(f(x)) f x T f x f x T f x image warping: change domain of image g(x) = f(T(x))

Image Transformations TT f f g g image filtering: change range of image g(x) = T(f(x)) image warping: change domain of image g(x) = f(T(x))

Parametric (global) warping Examples of parametric warps: translation rotation aspect affine perspective cylindrical

Parametric (global) warping Transformation T is a coordinate-changing machine: p’ = T(p) What does it mean that T is global? – Is the same for any point p – can be described by just a few numbers (parameters) For linear transformations, we can represent T as a matrix p’ = Mp T p = (x,y)p’ = (x’,y’)

Scaling Scaling a coordinate means multiplying each of its components by a scalar Uniform scaling means this scalar is the same for all components:  2 2

Non-uniform scaling: different scalars per component: Scaling X  2, Y  0.5

Scaling Scaling operation: Or, in matrix form: scaling matrix S What’s inverse of S?

2-D Rotation  (x, y) (x’, y’) x’ = x cos(  ) - y sin(  ) y’ = x sin(  ) + y cos(  )

2-D Rotation Polar coordinates… x = r cos (  ) y = r sin (  ) x’ = r cos (  +  ) y’ = r sin (  +  ) Trig Identity… x’ = r cos(  ) cos(  ) – r sin(  ) sin(  ) y’ = r sin(  ) cos(  ) + r cos(  ) sin(  ) Substitute… x’ = x cos(  ) - y sin(  ) y’ = x sin(  ) + y cos(  )  (x, y) (x’, y’) 

2-D Rotation This is easy to capture in matrix form: Even though sin(  ) and cos(  ) are nonlinear functions of , – x’ is a linear combination of x and y – y’ is a linear combination of x and y What is the inverse transformation? – Rotation by –  – For rotation matrices R

2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Identity? 2D Scale around (0,0)?

2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Rotate around (0,0)? 2D Shear?

2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Mirror about Y axis? 2D Mirror over (0,0)?

2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Translation? Only linear 2D transformations can be represented with a 2x2 matrix NO!

All 2D Linear Transformations Linear transformations are combinations of … –Scale, –Rotation, –Shear, and –Mirror Properties of linear transformations: –Origin maps to origin –Lines map to lines –Parallel lines remain parallel –Ratios are preserved –Closed under composition

Homogeneous Coordinates Q: How can we represent translation in matrix form?

Homogeneous Coordinates Homogeneous coordinates represent coordinates in 2 dimensions with a 3-vector

Homogeneous Coordinates 2D Points  Homogeneous Coordinates Append 1 to every 2D point: (x y)  (x y 1) Homogeneous coordinates  2D Points Divide by third coordinate (x y w)  (x/w y/w) Special properties Scale invariant: (x y w) = k * (x y w) (x, y, 0) represents a point at infinity (0, 0, 0) is not allowed (2,1,1) or (4,2,2)or (6,3,3) x yScale Invariance

Homogeneous Coordinates Q: How can we represent translation in matrix form? A: Using the rightmost column:

Translation Example t x = 2 t y = 1 Homogeneous Coordinates

Basic 2D transformations as 3x3 matrices Translate RotateShear Scale

Matrix Composition Transformations can be combined by matrix multiplication p’ = T(t x,t y ) R(  ) S(s x,s y ) p Does the order of multiplication matter?

Affine Transformations Affine transformations are combinations of Linear transformations, and Translations Properties of affine transformations: Origin does not necessarily map to origin Lines map to lines Parallel lines remain parallel Ratios are preserved Closed under composition Will the last coordinate w ever change?

Projective Transformations Projective transformations are combos of Affine transformations, and Projective warps Properties of projective transformations: Origin does not necessarily map to origin Lines map to lines Parallel lines do not necessarily remain parallel Ratios are not preserved Closed under composition Models change of basis Projective matrix is defined up to a scale (8 DOF)

2D image transformations These transformations are a nested set of groups Closed under composition and inverse is a member

Recovering Transformations What if we know f and g and want to recover the transform T? – e.g. better align images from Project 2 – willing to let user provide correspondences How many do we need? xx’ T(x,y) yy’ f(x,y)g(x’,y’) ?

Translation: # correspondences? How many Degrees of Freedom? How many correspondences needed for translation? What is the transformation matrix? xx’ T(x,y) yy’ ?

Euclidian: # correspondences? How many DOF? How many correspondences needed for translation+rotation? xx’ T(x,y) yy’ ?

Affine: # correspondences? How many DOF? How many correspondences needed for affine? xx’ T(x,y) yy’ ?

Projective: # correspondences? How many DOF? How many correspondences needed for projective? xx’ T(x,y) yy’ ?

Take-home Question 1) Suppose we have two triangles: ABC and DEF. What transformation will map A to D, B to E, and C to F? How can we get the parameters? A D B E F C 9/27/2011

Take-home Question 2) Show that distance ratios along a line are preserved under 2d linear transformations. 9/27/2011 Hint: Write down x2 in terms of x1 and x3, given that the three points are co-linear p1=(x1,y1) (x2,y2) (x3,y3) o o o p‘1=(x’1,y’1) (x’2,y’2) (x’3,y’3) o o o

Next class: texture mapping and morphing