Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Slides:



Advertisements
Similar presentations
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Advertisements

1 The world leader in serving science A Practical Introduction to Nuclear Magnetic Resonance Spectroscopy Basic Theory.
Advanced Higher Unit 3 Nuclear Magnetic Resonance Spectroscopy.
Structure Determination: MS, IR, NMR (A review)
NMR Spectroscopy.
Integration 10-6 Integration reveals the number of hydrogens responsible for an NMR peak. The area under an NMR peak is proportional to the number of equivalent.
1 Nuclear Magnetic Resonance Spectroscopy III Advanced Concepts: ORGANIC I LABORATORY W. J. Kelly.
Case Western Reserve University
Nuclear Magnetic Resonance (NMR) Spectroscopy
Understanding 13 C NMR spectroscopy. Nuclear magnetic resonance is concerned with the magnetic properties of certain nuclei. In this course we are concerned.
1 Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai’i Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
1 Nuclear Magnetic Resonance Spectroscopy Renee Y. Becker Valencia Community College CHM 2011C.
Nuclear Magnetic Resonance Spectroscopy. NMR Spectroscopy Method for determining the structure of organic molecules interpretation sample preparation.
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
1 Organic Chemistry, Third Edition Janice Gorzynski Smith University of Hawai’i Chapter 14 Lecture Outline Prepared by Layne A. Morsch The University of.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 7 th edition.
Nuclear Magnetic Resonance (NMR) Spectroscopy Structure Determination
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Nuclear Magnetic Resonance Spectroscopy
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
NMR Spectroscopy Abu Yousuf, PhD Associate Professor Department of Chemical Engineering & Polymer Science Shahjalal University of Science & Technology.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy Leroy Wade.
Proton NMR Carbon-13 NMR and proton NMR both depend on the ability of an odd nucleon to spin and also flip in an applied magnetic field. The energy to.
Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Chapter 3 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei have the property of nuclear spin. When placed between the poles of a magnet, the.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Write-up procedure: 1. Determine molecular formula from elemental analysis. 2. Determine elements of unsaturation from molecular weight [EOU=1/2(2C+2-H)]
Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice.
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
Nuclear Magnetic Resonance Spectroscopy, cont. Dr. Todebush Chemistry 2412L.
Nuclear Magnetic Resonance Spectroscopy
Chapter 14 NMR Spectroscopy Organic Chemistry 6th Edition Dr. Halligan
CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER THIRTEEN Terrence P. Sherlock Burlington.
Learning Objectives Use high resolution n.m.r spectrum of simple molecules (carbon, hydrogen & oxygen) to predict The different types of proton present.
All atoms, except those that have an even atomic number and an even mass number, have a property called spin.
Chapter 13 - Spectroscopy YSU 400 MHz Nuclear Magnetic Resonance Spectrometer(s)
Nuclear Magnetic Resonance Information Gained: Different chemical environments of nuclei being analyzed ( 1 H nuclei): chemical shift The number of nuclei.
Chapter 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
NMR Spectroscopy. NMR NMR uses energy in the radio frequency range. NMR uses energy in the radio frequency range. This energy is too low to cause changes.
Created with MindGenius Business 2005® Nuclear Magnetic Resonance Spectrometry Nuclear Magnetic Resonance Spectrometry.
Electromagnetic Spectrum. PROTON NUCLEAR MAGNETIC RESONANCE ( 1 H NMR)
California State University, Monterey Bay CHEM312
Structure Elucidation Method
NUCLEAR MAGNETIC RESONANCE SPECTROSCPY A guide for A level students KNOCKHARDY PUBLISHING.
Chapter 19 Part III Nuclear Magnetic Resonance Dr. Nizam M. El-Ashgar Chemistry Department Islamic University of Gaza 3/5/20161Chapter 19.
Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2003,  Prentice.
MOLECULAR STRUCTURE ANALYSIS NMR Spectroscopy VCE Chemistry Unit 3: Chemical Pathways Area of Study 2 – Organic Chemistry.
Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2003,  Prentice.
11.1 Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
NMR spectroscopy – key principles
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
Figure: 13.1 Title: Figure Nuclei in the absence and presence of an applied magnetic field. Caption: In the absence of an applied magnetic field,
Nuclear Magnetic Resonance Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
Advanced Pharmaceutical Analysis Nuclear Magnetic Resonance (H1 NMR)
Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. It is used to study.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
Presentation transcript:

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 5th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District ã 2003, Prentice Hall

Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1H 13C 15N 19F 31P => Chapter 13

Nuclear Spin A nucleus with an odd atomic number or an odd mass number has a nuclear spin. The spinning charged nucleus generates a magnetic field. => Chapter 13

External Magnetic Field When placed in an external field, spinning protons act like bar magnets. => Chapter 13

Two Energy States The magnetic fields of the spinning nuclei will align either with the external field, or against the field. A photon with the right amount of energy can be absorbed and cause the spinning proton to flip. => Chapter 13

E and Magnet Strength Energy difference is proportional to the magnetic field strength. E = h =  h B0 2 Gyromagnetic ratio, , is a constant for each nucleus (26,753 s-1gauss-1 for H). In a 14,092 gauss field, a 60 MHz photon is required to flip a proton. Low energy, radio frequency. => Chapter 13

Magnetic Shielding If all protons absorbed the same amount of energy in a given magnetic field, not much information could be obtained. But protons are surrounded by electrons that shield them from the external field. Circulating electrons create an induced magnetic field that opposes the external magnetic field. => Chapter 13

Shielded Protons Magnetic field strength must be increased for a shielded proton to flip at the same frequency. => Chapter 13

Protons in a Molecule Depending on their chemical environment, protons in a molecule are shielded by different amounts. => Chapter 13

NMR Signals The number of signals shows how many different kinds of protons are present. The location of the signals shows how shielded or deshielded the proton is. The intensity of the signal shows the number of protons of that type. Signal splitting shows the number of protons on adjacent atoms. => Chapter 13

The NMR Spectrometer => Chapter 13

The NMR Graph => Chapter 13

Tetramethylsilane TMS is added to the sample. Since silicon is less electronegative than carbon, TMS protons are highly shielded. Signal defined as zero. Organic protons absorb downfield (to the left) of the TMS signal. => Chapter 13

Chemical Shift Measured in parts per million. Ratio of shift downfield from TMS (Hz) to total spectrometer frequency (Hz). Same value for 60, 100, or 300 MHz machine. Called the delta scale. => Chapter 13

Delta Scale Chapter 13 =>

Location of Signals More electronegative atoms deshield more and give larger shift values. Effect decreases with distance. Additional electronegative atoms cause increase in chemical shift. => Chapter 13

Typical Values Chapter 13 =>

Aromatic Protons, 7-8 => Chapter 13

Vinyl Protons, 5-6 => Chapter 13

Acetylenic Protons, 2.5 => Chapter 13

Aldehyde Proton, 9-10 Electronegative oxygen atom => Chapter 13

O-H and N-H Signals Chemical shift depends on concentration. Hydrogen bonding in concentrated solutions deshield the protons, so signal is around 3.5 for N-H and 4.5 for O-H. Proton exchanges between the molecules broaden the peak. => Chapter 13

Carboxylic Acid Proton, 10+ Chapter 13 =>

Number of Signals Equivalent hydrogens have the same chemical shift. => Chapter 13

Intensity of Signals The area under each peak is proportional to the number of protons. Shown by integral trace. => Chapter 13

How Many Hydrogens? When the molecular formula is known, each integral rise can be assigned to a particular number of hydrogens. => Chapter 13

Spin-Spin Splitting Nonequivalent protons on adjacent carbons have magnetic fields that may align with or oppose the external field. This magnetic coupling causes the proton to absorb slightly downfield when the external field is reinforced and slightly upfield when the external field is opposed. All possibilities exist, so signal is split. => Chapter 13

1,1,2-Tribromoethane Nonequivalent protons on adjacent carbons. => Chapter 13

Doublet: 1 Adjacent Proton => Chapter 13

Triplet: 2 Adjacent Protons => Chapter 13

The N + 1 Rule If a signal is split by N equivalent protons, it is split into N + 1 peaks. => Chapter 13

Range of Magnetic Coupling Equivalent protons do not split each other. Protons bonded to the same carbon will split each other only if they are not equivalent. Protons on adjacent carbons normally will couple. Protons separated by four or more bonds will not couple. => Chapter 13

Splitting for Ethyl Groups => Chapter 13

Splitting for Isopropyl Groups => Chapter 13

Coupling Constants Distance between the peaks of multiplet Measured in Hz Not dependent on strength of the external field Multiplets with the same coupling constants may come from adjacent groups of protons that split each other. => Chapter 13

Values for Coupling Constants => Chapter 13

Complex Splitting Signals may be split by adjacent protons, different from each other, with different coupling constants. Example: Ha of styrene which is split by an adjacent H trans to it (J = 17 Hz) and an adjacent H cis to it (J = 11 Hz). => Chapter 13

Splitting Tree => Chapter 13

Spectrum for Styrene => Chapter 13

Stereochemical Nonequivalence Usually, two protons on the same C are equivalent and do not split each other. If the replacement of each of the protons of a -CH2 group with an imaginary “Z” gives stereoisomers, then the protons are non-equivalent and will split each other. => Chapter 13

Some Nonequivalent Protons => Chapter 13

Time Dependence Molecules are tumbling relative to the magnetic field, so NMR is an averaged spectrum of all the orientations. Axial and equatorial protons on cyclohexane interconvert so rapidly that they give a single signal. Proton transfers for OH and NH may occur so quickly that the proton is not split by adjacent protons in the molecule. => Chapter 13

Hydroxyl Proton Ultrapure samples of ethanol show splitting. Ethanol with a small amount of acidic or basic impurities will not show splitting. => Chapter 13

N-H Proton Moderate rate of exchange. Peak may be broad. => Chapter 13

Identifying the O-H or N-H Peak Chemical shift will depend on concentration and solvent. To verify that a particular peak is due to O-H or N-H, shake the sample with D2O Deuterium will exchange with the O-H or N-H protons. On a second NMR spectrum the peak will be absent, or much less intense. => Chapter 13

Carbon-13 12C has no magnetic spin. 13C has a magnetic spin, but is only 1% of the carbon in a sample. The gyromagnetic ratio of 13C is one-fourth of that of 1H. Signals are weak, getting lost in noise. Hundreds of spectra are taken, averaged. => Chapter 13

Fourier Transform NMR Nuclei in a magnetic field are given a radio-frequency pulse close to their resonance frequency. The nuclei absorb energy and precess (spin) like little tops. A complex signal is produced, then decays as the nuclei lose energy. Free induction decay is converted to spectrum. => Chapter 13

Hydrogen and Carbon Chemical Shifts => Chapter 13

Combined 13C and 1H Spectra => Chapter 13

Differences in 13C Technique Resonance frequency is ~ one-fourth, 15.1 MHz instead of 60 MHz. Peak areas are not proportional to number of carbons. Carbon atoms with more hydrogens absorb more strongly. => Chapter 13

Spin-Spin Splitting It is unlikely that a 13C would be adjacent to another 13C, so splitting by carbon is negligible. 13C will magnetically couple with attached protons and adjacent protons. These complex splitting patterns are difficult to interpret. => Chapter 13

Proton Spin Decoupling To simplify the spectrum, protons are continuously irradiated with “noise,” so they are rapidly flipping. The carbon nuclei see an average of all the possible proton spin states. Thus, each different kind of carbon gives a single, unsplit peak. => Chapter 13

Off-Resonance Decoupling 13C nuclei are split only by the protons attached directly to them. The N + 1 rule applies: a carbon with N number of protons gives a signal with N + 1 peaks. => Chapter 13

Interpreting 13C NMR The number of different signals indicates the number of different kinds of carbon. The location (chemical shift) indicates the type of functional group. The peak area indicates the numbers of carbons (if integrated). The splitting pattern of off-resonance decoupled spectrum indicates the number of protons attached to the carbon. => Chapter 13

Two 13C NMR Spectra => Chapter 13

MRI Magnetic resonance imaging, noninvasive “Nuclear” is omitted because of public’s fear that it would be radioactive. Only protons in one plane can be in resonance at one time. Computer puts together “slices” to get 3D. Tumors readily detected. => Chapter 13

End of Chapter 13 Chapter 13