DRILLING ENGINEERING CHAPTER # 1 Rotary Drilling Rigs.

Slides:



Advertisements
Similar presentations
A force applied over a surface is pressure.
Advertisements

Step 1: Digging a Cellar On land, a majority of wells begin with digging a cellar from three to fifteen feet in depth. The purpose of a cellar is to align.
1 references: Bernt S. Aadnoy, Iain Cooper, Stefan Z. Miska, Robert F. Mitchell, Michael L. Payne: Advanced Drilling and Well Technology. SPE 2009, ISBN:
Lubrication features of a large diesel engine
PETE 203 DRILLING ENGINEERING
Environmental Drilling By: Josh Humphreys October 8,2006.
Petroleum Engineering 406
Drilling Engineering – PE311 Circulating System
Introduction Recently the industry has had to moved from having traditional derrick mounted drill string compensators to utilizing active drawworks. This.
Fluid Power Systems Mill Creek High School Power and Energy.
Diesel Engine Components
Lesson 14 Jet Bit Nozzle Size Selection
Drilling Engineering – PE 311 Drill Bit Optimization
PETROLEUM ENGINEERING 411
PETE 411 Well Drilling Lesson 5 Hole Problems.
GEOTHERMAL DRILLING James C. Witcher Witcher and Associates
PETE 203 DRILLING ENGINEERING
Hydraulics.
Internal Combustion Engines. Engines External combustion engine Internal combustion engine Steam engine Gas turbine engine Steam engine Gas turbine engine.
© Goodheart-Willcox Co., Inc. Permission granted to reproduce for educational use only Publisher The Goodheart-Willcox Co., Inc. Tinley Park, Illinois.
BASIC MUD LOGGING.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Hydraulic Drives and Actuators. Description A hydraulic drive consists of three major parts: The generator (such as a hydraulic pump) driven by an electric.
Fundamentals of Petroleum Engineering. By: Bilal Shams Memon
Drilling Engineering – PE 311 Rotary Drilling System
Drilling Engineering – PE311 Rotary System
Rock Coring Obtain undisturbed samples of solid, fractured, or weathered rock formations.
Lesson 3 The Rig - Drilling Equipment
Lesson 4 Drilling Cost & Drilling Rate
Lesson 8 Offshore Drilling
Confidential to SMD JIP
Lesson 25 Well Control, cont’d
Drilling String Design
Reciprocating pump Pumps are used to increase the energy level of water by virtue of which it can be raised to a higher level. Reciprocating pumps are.
PETE 411 Well Drilling Lesson 9 Drilling Hydraulics - Hydrostatics.
Petroleum Engineering 406 Lesson 6 Well Control Unusual Operations.
Components of Centrifugal pumps
HVAC523 Circulator Pumps.
“DRILLING” MIDDLE EAST TECHNICAL UNIVERSITY
Well Design PE 413.
Drilling Operations History Drake’s Well was the first commercial oil well drilled in 1859 in Pennsylvania. Cable Tool Drilling technique was used to drill.
SIZING PNEUMATIC SYSTEMS. Introduction Pneumatic systems are sized to meet output power requirements. The air distribution system is sized to carry the.
Flat Saw Training. Flat Saw Sizes –Low Horsepower Blade diameters range from 8” (200mm) to 18” (450mm) Power ranges from 4 to 25 horsepower.
MUD LOGGING DEFINITION, THEORY & LAG CALCULATIONS
General Energy Equation. Chapter Objectives Identify the conditions under which energy losses occur in fluid flow systems. Identify the means by which.
Parul Institute of Engineering & Technology Subject Code : Name Of Subject : Fluid Power Engineering Name of Unit : Pumps Topic : Reciprocating.
Chapter 14 Fluids.
ARTIFICIAL LIFT METHODS
Kick Submited to :- Submitted by:- Er Akash Rana Devahish Yadav B.Tech IIIrd Year Petroleum Technology 1.
Rotating System Students: DINESH JOSHI RAJNISH VERMA RAMDEEN BISHNOI
BY B.JITHENDRA KUMAR Shaper Machine. Introduction The shaping machine is used to machine flat metal surfaces especially where a large amount of metal.
Prepared By Rohit G. Sorte M.Tech
Fluid Mechanics for Chemical Engineers Arif Hussain (Lecturer)
Dr. Subhash Technical Campus
OIL WELL DRILLING GUIDED BY Miss. SUMA K Lecturer PRESENTED BY SHALIN P M NO : 48 S7 CHEMICAL.
Diesel Engine Components
Overview of Petroleum Industry Chapter 4B – Drilling Operations
Linear actuator Cylinders Single acting Double acting
Chapter 3.
Engineering II – August 2016
Chapter 6: Hydraulic Cylinders and Cylinder Cushioning
Deptt. of Irrigation and Drainage Engineering, Dr. PDKV, Akola
Cementing How it is Done
SUSTAINABLE DRILLING OF OIL & GAS WELLS
Oil-Field Hydraulics Chapter 8 Shut-in Procedures
SHAPER MACHINE SHAPER MACHINE SHAPER MACHINE.
Diesel Automotive Engines
7 Measuring Engine Performance. 7 Measuring Engine Performance.
Drilling Technology.
Fluid Power System Principles
Presentation transcript:

DRILLING ENGINEERING CHAPTER # 1 Rotary Drilling Rigs

Objective Drilling Team To familiarize the student with (1) the basic rotary drilling equipment and operational procedures. (2) introduce the student to drilling cost evaluation. Drilling Team Large companies vs. small Specialized skills Service companies

Types of Wells (1) Wildcat Well: to discover new petroleum reservoir. (2) Development Well: exploit a known reservoir. Geological Group: recommends wildcat location. Reservoir Engg. Group: recommends development Drilling Group: designs and cost estimate. Tool pusher Driller Ass. Driller Derrickman (monkey board) 2-3 rotary helpers (floormen – or – rough necks) Motor man Rig mechanics

Head roust about is the crane operator Mud engineer Casing crew Types of Wells... Rig electrician Company man Roust abouts Head roust about is the crane operator Mud engineer Casing crew Cementing service Legal Group: secures drilling rights Surveyors: establish and stake well location Drilling Contractor (Bid basis) Cost per Foot – drilling in area is routine. Cost per Day – unknown area Location Preparation Water Wells

South Louisiana marshlands: inland barge Types of Wells... South Louisiana marshlands: inland barge Canadian Arctic Islands: man-made ice platform Extensive storage & Supply Manpower: Contractor Operator Service Company Consultants

1.1 Types of Drilling Rigs Drilling and workover rigs come in a variety of shapes and sizes with each having its own characteristics suited for a particular job. Although there are many factors to be considered in selecting the best rig for the job, a few are especially critical. They are: Surface location (land, inland water, offshore) Estimated maximum hole depth Horsepower requirements Cost Availability As can be imagined, the selecting of drilling and workover rigs is best accomplished by use of good, sound judgement and engineering experience.

Rigs Marine Land Bottom Support FLoating Mobile Conventional Platform Semi/ Submersible FLoating Mobile Conventional Platform Drill ship Jackup Barge Self -Contained Tendered Jacknife (Deeper) Portable Mast (Small)

Common Types of Drilling Rigs

1. Land Rigs As the name implies, these rigs are primarily used on land; however, some have been transported offshore for structure rig assignments. Most land rigs have to be transported to location in sections, but some are self-contained, permanently mounted on trucks. On location they are usually set up on a board mat with a substructure of 8 to 40 feet high, and a few are capable of drilling holes to 30,000+ feet.

2. Inland Barges a. Barge mounted rigs b. Posted barge mounted rigs Inland Barges are composed of two types: a. Barge mounted rigs This type rig is capable of drilling in water depths from 0 to 12 feet. After being towed on location, the rig’s hull is filled with water until it rests on bottom. b. Posted barge mounted rigs These type rigs have an upper deck supported by posts from the lower hull. The deck contains all drilling equipment and accommodations. Posted barges are capable of drilling in water depths from 0 to 20 feet. The rig is towed on location and the lower hull filled with water to secure it on bottom.

3. Submersible Rigs 4. Jack-up Rigs These rigs are towed on location and are capable of working in water depths from 18 to 70 feet. They are composed of an upper deck and lower hull connected by beams. On some types a large bottle, or something similar, is located on each corner of the rig for stability. These bottles, as well as the lower hull itself, are filled with water to set the rig on bottom and stabilize against movement. 4. Jack-up Rigs These rigs are normally towed on location, but a few are self-propelled. They are composed of an upper deck supported by either three or more legs attached to mats or spud cans and are capable of working in water depths from 30 to 350 feet. These mats or cans rest on the ocean floor with the deck jacked up into drilling position. There are two common types of jack-up rigs; Bethlehem and Letourneau. The former uses stabilized column legs attached to mats while the latter uses three, truss-type legs mounted on spudcans.

5. Semi-Submersible 6. Drill Ships These rigs can be towed on location, or some types are self-propelled. They are capable of drilling in water depths of 20 to 2,000+ feet. The rig itself remains stationary in the drilling position by a series of anchors (usually two connected at each corner of the rig) positioned on the ocean floor at a distance away from the rig. It should also be noted that some Semis can be used as a submersible rig. 6. Drill Ships Drill ships are self-propelled drilling vessels capable of drilling in water depths of 18 to 2,000+ feet. There are two basic types of drill ships - one that positions itself with anchors and one that uses dynamic positioning.

7. Structure Rigs Structure rigs are mounted on a fixed platform with all drilling equipment secured on deck. The rig itself is capable of changing positions on the structure; however, the structure is permanently based and designed to last many years. Structures are capable of being set in water depths of 10 to 850+ feet. Structure set-ups usually follow a successful exploratory program in order that many development wells can be drilled from one location. These wells are almost always directional.

Rotary Drilling Process Rotary table rotates the drill string Downward force applied to the bit Cuttings are lifted to the surface by circulating a fluid down the drill string. Main Component Parts of a Rotary Rig are:- 1. Power System 2. Hoisting System 3. Fluid Circulating System 4. Rotary System 5. Well Control System 6. Well Monitoring System

A Rotary Drilling Rig

1.2 Rig Power System Most power consumed by : hoisting system and fluid circulation Not used at same time Total power requirements 1000 – 3000 hp Old days steam Now internal combustion diesel engines types (1) diesel-electric type (electric motors), (2) direct-drive type (gears-chains) depending on power method.

Power-System Performance Characteristics Are stated in terms of: 1. Output horse power 2. Torque 3. Fuel consumption for various engine speeds P =  T = 2N.F.r (1.1) Where, P = shaft power (hp)  = 2N, Angular velocity of the shaft (engine speed), rad/min T = output torque (lb-ft) N = Rev./min

Heat energy to the engine Qi Qi = Wf.H (hp) (1.2) Power-System Performance Characteristics …... Overall power efficiency determines the rate of fuel consumption (Wf) at a given engine speed. Heating values (H Btu/lbm) of various fuels for internal combustion engines are shown in Table 1.1. Fuel Density (lbm/gal) Heating Value H(Btu/lbm) Diesel 7.2 19,000 Gasoline 6.6 20,000 Butane 4.7 21,000 Methane -- 24,000 Heat energy to the engine Qi Qi = Wf.H (hp) (1.2) Et = P /Qi = Energy Output / Energy Input (1.3) Et = overall power system efficiency

Example 1.1: A diesel engine gives an output torque of 1,740 ft-lbf at an engine speed of 1,200 rpm. If the fuel consumption rate was 31.5 gal/hr, what is the output power and overall efficiency of the engine? Solution: The annular velocity, , is given by =2(1,200) = 7,539.8 rad/min. The power output can be computed using Eq. 1.1: P=  T = 397.5 hp Since the fuel type is diesel, the density  is 7.2 lbm/gal and the heating value H is 19,000 Btu/lbm (Table 1.1). Thus, the fuel consumption rate is wf is

wf = 31.5 gal/hr (7.2 lbm/gal) = 3.78 lbm/min The total heat energy consumed by the engine is given by Eq. 1.2: Qi= wf H = 1,695.4 hp. Thus, the overall efficiency of the engine at 1,200 rpm given by Eq. 1.3 is = 0.234 or 23.4% Answer

1.3 Hoisting System Function: Principal Components: Used to lower or raise drill strings, casing string and other subsurface equipment into or out of hole. Principal Components: 1. Derrick and substructure 2. Block and tackle 3. Draw works Functions of Derrick: 1. Provides vertical height required to raise sections of pipe. 2. Rated according to their ability to withstand compressive loads and (wind loads) Components of Block and Tackle: 1. Crown block 2. Travelling block 3. Drilling line

Components of the hoisting system

Principal Function: To provide a mechanical advantage which permits easier handling of large loads. M= Mechanical advantage F = tension in the fast line The ideal mechanical advantage that assumes no friction in the block and tackle can be determined from a force analysis of the travelling block. n Ff= W

Input power of block and tackle = pi Pi = Ff Vf (1.5) Ff = draw works load Vf = velocity of fast line Ph = output power of the hook load Pn = W.Vb (1.6) W = travelling block load Vb = velocity of travelling block

Tension in the fast line Power efficiency is actual system Tension in the fast line (1.7) Eq. 1.7 is used to select drilling line size. Fd = W + Ff + Fs (1.8a) Fd = load applied to the derrick Fs = tension in the lead line (1.8b) fast dead

Example 1. 2:. A rig must hoist a load of 300,000 lbf Example 1.2: A rig must hoist a load of 300,000 lbf. The drawworks can provide an input power to the block and tackle system as high as 500hp. Eight lines are strung between the crown block and traveling block. Calculate (i) the static tension in the fast line when upward motion is impending, (ii) the maximum hook horsepower available, (iii) the maximum hoisting speed, (iv) the actual derrick load (v) the maximum equivalent derrick load, and (vi) the derrick efficiency factor. Assume that the rig floor is arranged as shown in Fig 1.17.

Solution: (i) the power efficiency of n=8 is given as 0.841 in Table 1.2. The tension in the fast line is given by Eq. 1.7. (ii) The maximum hook horsepower available is Ph = E.I = 0.841 (500) = 420.5 hp (iii) The maximum hoisting speed is given by = 46.3 ft/min

To pull a 90-ft stand would require (iv) The actual derrick load is given by Eq. 1.8b = 382,090 lbf (v) The maximum equivalent load is given by Eq. 1.9 (vi) The derrick efficiency factor is 0.849 or 84.9% Answer

Drawworks Provide the hoisting and braking power required to raise or lower the heavy strings of the pipe. Principle Parts The drums The brakes The transmission The catheads

1.4 Rotary System Main Parts: 1. Swivel 2. Kelly 3. Rotary Drive 4. Rotary Table 5. Drill Pipe 6. Drill Collar 1. Swivel: Supports the weight of the drillstring and permits rotation i.e. Bail and Gooseneck. 2. Kelly: Square or Hexagonal to be gripped easily. Torque is transmitting through kelly bushings. Kelly saver sub is used to prevent wear on the kelly threads.

Provides the power to turn the rotary table. Rotary System…... 3. Slips: During making up a joint slips are used to prevent drillstring from falling in hole. 4. Rotary Drive: Provides the power to turn the rotary table. * Power Sub: can be used to connect casing. 5. Drill Pipe: Specified by (a) Outer Diameter (b) Weight per foot (c) Steel grade (d) Range Length Range Length (ft) 1 18 to 22 2 27 to 30 3 38 to 45

* Tool Joint: Female is called Box. Male is called Pin. Rotary System…... * Tool Joint: Female is called Box. Male is called Pin. * Upset : Thicker portion of the pipe. * Internal upset: Extra thick. * Thread Type: Round, tungsten carbide hard facing. 6. Drill Collar: Thick walled heavy steel pipe used to apply weight to the bit. * Stabilizer Subs : Keep drill collars centralized. * Capacity : Volume per unit Length. = Capacity of pipe (1.13) = Capacity of annulus (1.14) = Displacement (1.15)

Capacity and displacement nomenclature Rotary System…... Capacity and displacement nomenclature

For field units of feet and barrels, Eq. 1.13 becomes Rotary System…... Example 1.4: A drillstring is composed of 7,000 ft of 5-in., 19.5-lbm/ft drillpipe and 500 ft of 8-in. OD by 2.75-in ID drill collars when drilling a 9.875-in. borehole. Assuming that the borehole remains in gauge, compute the number of pump cycles required to circulate mud from the surface to the bit and from the bottom of the hole to the surface if the pump factor is 0.178 bbl/cycle. Solution: For field units of feet and barrels, Eq. 1.13 becomes

And the capacity of the drill collars is Rotary System…... Using Table 1.5, the inner diameter of 5-in., 19.5 lbm/ft drillpipe is 4.276 in.; thus, the capacity of the drillpipe is And the capacity of the drill collars is The number of pump cycles required to circulate new mud bit is given by

Similarly, the annular capacity outside the drillpipe is given by Rotary System…... Similarly, the annular capacity outside the drillpipe is given by And the annulus capacity outside the drill collars is The pump cycles required to circulate mud from the bottom of the hole to the surface is given by Answer

Components of the rotating system

1.5 Circulating System Components: 2. Mud Pits 3. Mud Mixing Equipment 1. Mud Pumps 2. Mud Pits 3. Mud Mixing Equipment 4. Contaminants Removal Equipment Pumps: Reciprocating Positive Displacement Piston Pumps. Two-Cylinders - Duplex (Double Acting Forward-Backward) Three-Cylinders - Triplex (Forward only Single Acting) Duplex Triplex Heavy Light Bulky More Compact High Output Pressure Lower Pulsation Without Pulsation Require more Maint. Cheaper to Operate Therefore majority of new pumps are Triplex.

Advantages (2) Ability to move large particles Circulating System…... Advantages (1) Ability to move high solid content fluids (2) Ability to move large particles (3) Ease to operation and maintenance (4) Reliability (5) Ability to operate over wide range of pressure s and flow rates by changing the diameters of the pump liners and pistons. Overall Pump Efficiency =Mechanical Efficiency x Volumetric Efficiency Em= Mechanical Efficiency ~ 90% Ev= Volumetric Efficiency ~ 100% Two Circulating pumps are installed on the rig. Shallow portion both are used. Deeper portion one is used.

Components of the circulating System.

Circulating System…... Circulating System

Forward Stroke Volume Displaced = (/4) dL2 Ls Circulating System…... Pump Displacement (1) Double Acting Figure 1.25 (a) dr = Piston rod diameter dL= Liner diameter Ls= Stroke Length (Stroke = one complete pump revolution). Forward Stroke Volume Displaced = (/4) dL2 Ls Backward Stroke Volume Displaced = (/4) (dL2 - dr2 ) Ls (for one Cylinder) Total Volume =Fp= 2 Ls(/4) (2LL2 - Lr2 ) . Ev (1.10) (for two Cylinders) Fp= Pump factor or pump displacement cycle.

Example 1.3: Compute the pump factor in units of barrels per stroke for a duplex pump having 6.5-in. liners, 2.54-in. rods, 18-in. strokes and a volumetric efficiency of 90%? Solution: The pump factor for a duplex pump can be determined using Eq 1.10: Fp = 2 Ls(/4) (2LL2 - Lr2 ) . Ev = (/2) (18) [ 2(6.5)2 - (2.5)2] . (0.9) = 1991.2 in.3 /stroke or = 0.2052 bbl/stroke. Answer

Figure 1.25(b) q=flow rate = Fp . N Pumps are rated for Circulating System…... (2) Triplex Acting Figure 1.25(b) Fp= 2 (/4) dL2 Ls. Ev (1.11) q=flow rate = Fp . N (Where N = no. of cycles per unit time) Pumps are rated for 1. Hydraulic Power 2. Maximum Pressure 3. Maximum Flowrate (1.12) PH = Pump Pressure, hp ∆P = Increase in pressure, psi q = Flow rate (gal/min) ∆P cannot more than 3500 psi

Flow conduits between pump and drill string include: Circulating System…... Flow conduits between pump and drill string include: 1. Surge chamber (Pulsation Damper) 2. 4 or 6 inch heavy-walled pipe connecting the pump to a pump manifold located on the rig floor. 3. Standpipe and rotary hose. 4. Swivel 5. Kelly Go over EXAMPLE 1.3.

Gas as a drilling Fluid (Air, Natural gas) Circulating System…... Contaminant Removal 1. Shale shaker for coarse rock cuttings 2. Hydrocyclones and decanting centrifuge for fine particles. 3. Degasser Gas as a drilling Fluid (Air, Natural gas) 1. Penetration rate is higher than water especially when formation is strong and extremely low K. 2. Water flow is a problem. 3. Isolate by injecting (a) Low Viscosity Plastic (b) Silicon Tetrachloride (c) Using Packers 4. Min. annular velocity is 3000 ft/min for injection pressure. 5. Use Foam.

1.6 Well Monitoring System Parameters displayed 1. Depth 2. Penetration rate 3. Hook Load 4. Rotary Speed 5. Rotary Torque 6. Pump Rate 7. Pump Pressure 8. Mud Density 9. Mud Temperature 10. Mud Salinity 11. Gas content of mud 12. Hazardous gas content of air 13. Pit Level 14. Mud Flow Rate. * Centralized well monitoring system * Mud Logger * Subsurface well-monitoring and data telemetry systems (mud pulser).

1.7 Well Control System Function: Kick: Uses: Prevents the uncontrolled flow of formation fluids from the wellbore. Kick: Flow of formation fluids in the presence of drilling fluid (blowout). Uses: 1. Detect the Kick 2. Close the well at the surface. 3. Circulate the well under pressure to remove formation fluids and increase density. 4. Move drillstring under pressure. 5. Divert flow away from rig personnel and equipment.

Kick Detection During Drilling Operation

c. Hole fill up indicator (during tripping) d. Count the pump strokes. Well Control System…... Kick Detection: a. Pit volume indicator b. Flow indicator c. Hole fill up indicator (during tripping) d. Count the pump strokes. BOP (Blow Out Preventer) Multiple BOP’S used in series: BOP Stack Ram Preventers Semi circular openings which Pipe Rams match diameter of pipe Blind Rams : Closes the hole, no pipe present. Shear Rams: Blind rams that shear the pipe. Working press: 2000, 5000, 10000, 15000 psig. Annular Preventers (Bag-type): Rubber Ring BOPE:Closed hydraulically or using screw-type locking.

High pressure hydraulic system used to close the BOP. Well Control System…... Accumulators High pressure hydraulic system used to close the BOP. * Fluid Capacity : 40, 80 120 gal. * Max. Operating Pressure : 1500-3000 psig. * has a small pump independent of rig power. Strip Pipe Lower pipe with preventer closed. Must be able to vary closing pressure using pressure regulating system. Drilling Spool Placed between ram preventers (1) provide space for stripping (2) flowline attached to it.

conduit used to pump into the annulus. Well Control System…... Kill Line conduit used to pump into the annulus. Choke Line Conduit used to release fluid Diverter Line from the annulus. Drilling Spools Must be large enough to allow next casing to be put in place without removing the BOP. Casing Head (Braden Head) Attached to BOP, welded to the first string of casing cemented in the well. Control Panel To operate the BOP stack. RSRRS

Close the flow inside kelly. Internal Blowout Preventers Well Control System…... Rotating Head Seals around the kelly at top of BOP stack, used for drilling with slight surface pressure at annulus. Kelly Cock Close the flow inside kelly. Internal Blowout Preventers Prevents flow inside drill string. Adjustable Choke Used during Kick circulation, controlled from a remote panel on the rig floor. Sufficient pressure must be held against the well by the choke so that the bottomhole pressure in the well is maintained slightly above the formation pressure. * Working Press Systems: 2000,3000,5000,10000,15000 psig.