Progress of SOI Pixel Detectors Sep. 9, Yasuo Arai, KEK 1.

Slides:



Advertisements
Similar presentations
PRAGUE November 2002 Monolithic Silicon Pixel Detectors in SOI Technology J. Marczewski, K. Domanski, P. Grabiec, M. Grodner,
Advertisements

Metal Oxide Semiconductor Field Effect Transistors
Monolithic Pixel Detectors in a Deep Submicron SOI Process, TIPP, Tsukuba, Japan March Discussion of process features.
CINCINNATI, FNAL, HAWAII, LBNL, PRINCETON, SLAC, VPI KEK, NAGOYA, NIIGATA, OSAKA,SAGA, TOHOKU, TOKYO, TMU, TSUKUBA Detector R&D.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
Development of monolithic pixel sensors in Silicon On Insulator technology Serena Mattiazzo University of Padova (Italy) D. Bisello, P. Giubilato, D. Pantano.
Ryo Ichimiya (KEK/IPNS) on behalf of the SOIPIX collaboration 1 8 th International Meeting of Front-End Electronics (FEE2011),
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Optional Reading: Pierret 4; Hu 3
3D chip and sensor Status of the VICTOR chip and associated sensor Bonding and interconnect of chip and sensor Input on sensor design and interconnection.
SOIPD 2009 SOIPD KEK-LBNL-Padova collaboration. SOIPD 2009 Silicon On Insulator (SOI) detectors SOI-2 (2008) 0.20um OKI FD-SOI technology 128  172 digital.
TRAPPISTE Tracking Particles for Physics Instrumentation in SOI Technology Prof. Eduardo Cortina, Lawrence Soung Yee Institut de recherche en mathématique.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
SOI Pixel Detector : Present Status & Future Plans Super Belle Collb. Mtg Dec. 11, 2008 Yasuo Arai (KEK)
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
TCAD Simulation for SOI Pixel Detector
CMOS Analog Design Using All-Region MOSFET Modeling 1 CMOS Analog Design Using All-region MOSFET Modeling Chapter 3 CMOS technology, components, and layout.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
S. Mattiazzo 1,2, M. Battaglia 3,4, D. Bisello 1,2, D. Contarato 4, P. Denes 4, P. Giubilato 1,2,4, D. Pantano 1,2, N. Pozzobon 1,2, M. Tessaro 2, J. Wyss.
Monolithic Active Pixel Matrix with Binary Counters MAMBO III Monolithic Active Pixel Matrix with Binary Counters Farah Khalid Alpana Shenai Gregory Deptuch.
Process Monitor/TID Characterization Valencia M. Joyner.
SOI pixel detector technology US-Japan collaboration Farah Khalid on behalf of ASIC Development Group SOIPIX collaboration people involved in SOIPIX: G.Deptuch,
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
VIP1: a 3D Integrated Circuit for Pixel Applications in High Energy Physics Jim Hoff*, Grzegorz Deptuch, Tom Zimmerman, Ray Yarema - Fermilab *
Foundry Characteristics
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Status of Hamamatsu Silicon Sensors K. Hara (Univ of Tsukuba) Delivery leakage current at 150V & 350V number of defect channels wafer thickness & full.
CMOS Fabrication nMOS pMOS.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Test structures for the evaluation of TowerJazz 180 nm CMOS Imaging Sensor technology  ALICE ITS microelectronics team - CERN.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
CMOS FABRICATION.
Federico Faccio CERN/PH-MIC
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
M. Battaglia 1,2,3, D. Bisello 3, D. Contarato 2, P. Denes 2, P. Giubilato 1,3,4, S. Mattiazzo 3, D. Pantano 3, N. Pozzobon 3, S. Zalusky 1,4 1 University.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
Progress of SOI Pixel sensor R&D T. Tsuboyama (KEK) 1 Ottobre 2014.
TCAD Simulation for SOI Pixel Detectors October 31, 2006 Hirokazu Hayashi, Hirotaka Komatsubara (Oki Elec. Ind. Co.), Masashi Hazumi (KEK) for the SOIPIX.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
L. Ratti a,b, M. Dellagiovanna a, L. Gaioni a,b, M. Manghisoni b,c, V. Re b,c, G. Traversi b,c, S. Bettarini d,e, F. Morsani e, G. Rizzo d,e a Università.
Development of SOI Pixel Detectors Toshinobu Miyoshi - Institute of Particle and Nuclear Studies, KEK On behalf of SOI collaboration 1 VIPS Workshop.
Development of SOI pixel sensor 28 Sep., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group.
Ryo Ichimiya et Yasuo Arai KEK/IPNS / Workshop.
Selcuk Cihangir, Fermilab LCWS 2007, DESY 1 SOI, 3D and Laser Annealing for ILC S.Cihangir-Fermilab Representing Contributors from: Fermilab, Bergamo,
Pixel Meeting Nov 7, Status Update on Sensors and 3D Introduction Laser Annealed HPK sensors MIT-LL thinned sensors SOI devices –OKI –ASI 3D assembly.
Performance test of the SOI pixel detector Hideki MIYAKE (Osaka University) for SOIPIX group Hideki MIYAKE (Osaka University) for SOIPIX group Oct.31,
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
Page 1 Liverpool January 11th, 2012 LHCb Upgrade Meeting Planar Silicon Detectors I. Tsurin Generic sensor R&D ATLAS-oriented commitments LHCb-oriented.
10-12 April 2013, INFN-LNF, Frascati, Italy
R&D status of pixel sensors based on SOI technology
Status of SOI Pixel Development
Status of SOI Pixel Mar. 18, PXD Mtg. Yasuo Arai (KEK)
3D sensors: status and plans for the ACTIVE project
Presentation transcript:

Progress of SOI Pixel Detectors Sep. 9, Yasuo Arai, KEK 1

OUTLINE 1.Overview of SOIPIX activities 2.On-Going R&Ds Buried P-Well Wafer Thinning FZ-SOI Wafer Nested BNW/BPW Structure Double SOI Wafer 3.Summary 1.Overview of SOIPIX activities 2.On-Going R&Ds Buried P-Well Wafer Thinning FZ-SOI Wafer Nested BNW/BPW Structure Double SOI Wafer 3.Summary Other SOI related talks XFEL – MVIA  T. Hatusi ILC Pair Monitor  Y. Sato LBNL/Padva  P. Giubilato Vertical Integration  M. Motoyoshi R. Yarema Other SOI related talks XFEL – MVIA  T. Hatusi ILC Pair Monitor  Y. Sato LBNL/Padva  P. Giubilato Vertical Integration  M. Motoyoshi R. Yarema

No mechanical bump bondings -> High Density, Low material budget -> Low parasitic Capacitance, High Sensitivity Standard CMOS circuits can be built Thin active Si layer (~40 nm) -> No Latch Up, Small SEE Cross section. Based on Industrial standard technology Seamless connection to Vertical Integration 3 Monolithic detector using Bonded wafer (SOI : Silicon-on-Insulator) of Hi-R and Low-R Si layers. SOI Pixel Detector 3

OKI 0.2  m FD-SOI Pixel Process Process 0.2  m Low-Leakage Fully-Depleted SOI CMOS (OKI) 1 Poly, 4 (5) Metal layers, MIM Capacitor, DMOS option Core (I/O) Voltage = 1.8 (3.3) V SOI wafer Diameter: 200 mm , Top Si : Cz, ~18  -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz ~700  -cm (n-type), 650  m thick BacksideThinned to 260  m and sputtered with Al (200 nm). An example of a SOI Pixel cross section 4

MPW (Multi Project Wafer) run ~Twice per Year 5

KEK, Tsukuba Univ., Tohoku Univ., Kyoto Univ., Kyoto U. of Education, Osaka Univ., JAXA/ISAS, RIKEN, AIST LBNL, FNAL, Univ. of Hawaii INP Krakow, INFN Padova, Louvain-la-Neuve Univ., Universität Heidelberg IHEP China Budker Institute of Nucl. Phys. KEK, Tsukuba Univ., Tohoku Univ., Kyoto Univ., Kyoto U. of Education, Osaka Univ., JAXA/ISAS, RIKEN, AIST LBNL, FNAL, Univ. of Hawaii INP Krakow, INFN Padova, Louvain-la-Neuve Univ., Universität Heidelberg IHEP China Budker Institute of Nucl. Phys. SOI MPW run Users 6 OKI Semiconductor Co. Ltd., OKI Semiconductor Miyagi Co. Ltd., T-Micro Co. Ltd., Rigaku Co. Ltd. Supporting Companies Open to anybody!

7 KEK SOI Pixels 7 INTPIX4: Integration Type 10.2 mm x 15.4 mm 17x17  m 2, 512x832 (~430k ) pixels 、 13 Analog Out 、 CDS. INTPIX4: Integration Type 10.2 mm x 15.4 mm 17x17  m 2, 512x832 (~430k ) pixels 、 13 Analog Out 、 CDS. 7 CNTPIX5: Counting Type 5 mm x 15.4 mm 64 x 64  m 2, 72 x 272 pixels Amp+Shaper+2xDiscri+2x9b Counter CNTPIX5: Counting Type 5 mm x 15.4 mm 64 x 64  m 2, 72 x 272 pixels Amp+Shaper+2xDiscri+2x9b Counter

8 Riken - MVIA Fermilab - MAMBO LBNL-AChip Kyoto Univ. - XRPIX Other SOI Pixels

9 Increase No. of Metal Layer : 4 -> 5 layers --> Better Power Grid and Higher Integration Recent Process Improvements Shrink MIM capacitor size : 1 -> 1.5 fF/um 2 --> Smaller Pixel size become possible

10 Relax drawing rule : 30 o, 45 o -> Circle --> Smooth field and Higher Break Down Voltage Recent Process Improvements Introduction of source-inserted body contacts --> Better body contacts (Less kink and history effects, Lower noise).

11 On-Going R&Ds a.Back Gate Effect : Sensor voltage affect Transistor characteristics  Buried P-Well (BPW) layer b.Wafer Thinning : Thin Sensor  TAICO process c.Wafer Resistivity : Lower depletion voltage  FZ SOI wafer d.Cross Talk : Reduce coupling between Sensor and Circuit  Nested BNW/BPW Structure e.Radiation Hardness : Compensate traped charge  Double SOI Wafer a.Back Gate Effect : Sensor voltage affect Transistor characteristics  Buried P-Well (BPW) layer b.Wafer Thinning : Thin Sensor  TAICO process c.Wafer Resistivity : Lower depletion voltage  FZ SOI wafer d.Cross Talk : Reduce coupling between Sensor and Circuit  Nested BNW/BPW Structure e.Radiation Hardness : Compensate traped charge  Double SOI Wafer

a. Back Gate Effect Front Gate and Back Gate are coupled. (Back Gate Effect) Front Gate and Back Gate are coupled. (Back Gate Effect) 12 Vg_back

BPW Implantation Suppress the back gate effect. Shrink pixel size without loosing sensitive area. Increase break down voltage with low dose region. Less electric field in the BOX which may improve radiation hardness. Suppress the back gate effect. Shrink pixel size without loosing sensitive area. Increase break down voltage with low dose region. Less electric field in the BOX which may improve radiation hardness. BPW P+ SOI Si Buried Oxide (BOX) Cut Top Si and BOX High Dose Cut Top Si and BOX High Dose Keep Top Si not affected Low Dose Keep Top Si not affected Low Dose Substrate Implantation PixelPeripheral Buried p-Well (BPW) 13

I d -V g and BPW w/o BPW with BPW=0V NMOS Back gate effect is suppressed by the BPW. shift back channel open 14

15 b. Wafer Thinning :TAIKO process Back side process still can be done after thinning.

16 I-V Characteristic Before & After Thinning No difference seen after thinning Thinned to 110 um and diced

17 Infrared Laser (1064 nm) Response of Thinned Chip Full Depleted around 100V

18 Before OxidationConventional SOI Process Improved SOI Process c. Wafer Resistivity : FZ SOI Wafer During the conventional SOI process, many slips were generated in the 8’’ FZ-SOI wafer. We optimized the process parameters, and succeeded to perform the process without creating many slips. Slips

19 FZ-SOI Wafer Depletion Full

20 d. Nested BNW/BPW Structure Structure developed in cooperation between G. Deptuch (Fermilab) and I. Kurachi (OKI Semi) Signal is collected with the deep Buried P-well. Back gate and Cross Talk are shielded with the Buried N-well. Test chip is under process. Signal is collected with the deep Buried P-well. Back gate and Cross Talk are shielded with the Buried N-well. Test chip is under process. implant

21 additional conduction layer sensor circuit Increase radiation hardness by compensating Oxide/Interface Trap charge with middle layer bias. e. Double SOI Layer wafer Shield sensors from circuit

22 Leak Current and V Th resumes to nearly original value by biasing back side even after 100Mrad. before irradiation Vback= V p/cm 2 (~100 Mrad) p/cm 2 (~100 Mrad) Total Ionization Dose effect can be compensated by back bias

23 Summary Our SOI MPW run is operated regularly twice per year. In addition to many chip designs, a lot of activities are going. a. Buried P-Well technology is very successful to suppress the Back Gate problem. b. Thinning to 110um by TAICO process works very well. c. Wafer resistivity is greatly increased by using FZ-SOI wafer. d. Nested BNW/BPW structure may resolve cross talk problem and opened possibility of new sensor structure. e. Manufacturing of Double SOI wafer is being discussed with supply and processing companies. Vertical integration  Motoyoshi san’s Talk

24 Supplement

KEK-OKI semi SOI Brief History '05. 7: Start Collaboration with OKI Semiconductor. '05.10: First Submission in VDEC 0.15 um MPW. '06.12: 1 st (and last) 0.15 um KEK MPW run. '07.3: 0.15 um lab. process line was closed. --> move to 0.2 um mass production line. '08.1: 1 st KEK SOI-MPW run. '09.2: 2 nd KEK SOI-MPW run. '09.8: 3 rd KEK SOI-MPW run. '10.1: 4 th KEK SOI-MPW run. '10.8: 5 th KEK SOI-MPW run. '05. 7: Start Collaboration with OKI Semiconductor. '05.10: First Submission in VDEC 0.15 um MPW. '06.12: 1 st (and last) 0.15 um KEK MPW run. '07.3: 0.15 um lab. process line was closed. --> move to 0.2 um mass production line. '08.1: 1 st KEK SOI-MPW run. '09.2: 2 nd KEK SOI-MPW run. '09.8: 3 rd KEK SOI-MPW run. '10.1: 4 th KEK SOI-MPW run. '10.8: 5 th KEK SOI-MPW run. 25

Handle Wafer p+ n+ Handle Wafer Box (Buried Oxide) (200 nm) SOI (40 nm) 650um Al p+ n+ Handle Wafer 50~650um SOI Pixel Process Flow 26

27 線線 Integration Type Pixel (INTPIX) Size : 14  m x 14  m with CDS circuit Size : 14  m x 14  m with CDS circuit

Counting Type Pixel (CNTPIX5) 5 x15.4 mm 2 72 x 272 pixels 64um x 64 um pixel 5 x15.4 mm 2 72 x 272 pixels 64um x 64 um pixel Energy selection and Counting in each pixel Time Resolved Imaging 9bit x 8 28

29 Integration Type Pixel (INTPIX4) 15 mm 10 mm 17x17  m, 512x832 (~430k ) pixels 、 13 Analog Out 、 CDS circuit in each pixel. Largest Chip so far. 29