[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 3:

Slides:



Advertisements
Similar presentations
Unit #3 Schedule: Last Class: – Sanger Sequencing – Central Dogma Overview – Mutation Today: – Homework 5 – StudyNotes 8a Due – Transcription, RNA Processing,
Advertisements

Tutorial 1 Biology background for the course. Genome sizes and number of genes OrganismGenome SizeNo. of genes E. coli4.6 Mb~4,300 genes Baker’s Yeast12.
Central dogma DNA is made (transcribed) into RNA RNA is made (translated) into protein.
CS262 Lecture 9, Win07, Batzoglou Gene Recognition.
[Bejerano Aut08/09] 1 MW 11:00-12:15 in Beckman B302 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean.
[Bejerano Aut07/08] 1 MW 11:00-12:15 in Redwood G19 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean.
Recap Sometimes it is necessary to conduct Bad Science – often the product of having too much information Human Genome Project changed natural scientists.
The Central Dogma of Molecular Biology (Things are not really this simple) Genetic information is stored in our DNA (~ 3 billion bp) The DNA of a.
CS262 Lecture 17, Win07, Batzoglou Gene Regulation and Microarrays.
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 7:
CS273A Lecture 5: Genes Enrichment, Gene Regulation I
Express yourself That darn ribosome Mighty Mighty Proteins Mutants RNA to the Rescue
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 8:
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
[BejeranoFall14/15] 1 MW 12:50-2:05pm in Beckman B100 Profs: Serafim Batzoglou & Gill Bejerano CAs: Jim Notwell & Sandeep Chinchali.
Transcription Nicky Mulder Acknowledgements: Anna Kramvis for lecture material (adapted here)
From DNA to Proteins Lesson 1. Lesson Objectives State the central dogma of molecular biology. Describe the structure of RNA, and identify the three main.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Eukaryotic DNA.
Making of Proteins: Transcription and Translation
RNA and Protein Synthesis
RNA and Protein Synthesis
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Molecular Biology Primer. Starting 19 th century… Cellular biology: Cell as a fundamental building block 1850s+: ``DNA’’ was discovered by Friedrich Miescher.
Protein Synthesis 12-3.
Chapter 13: RNA and Protein Synthesis
RNA and Protein Synthesis
Molecular Biology in a Nutshell (via UCSC Genome Browser) Personalized Medicine: Understanding Your Own Genome Fall 2014.
AP Biology From Gene to Protein How Genes Work.
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 6:
Predicting protein degradation rates Karen Page. The central dogma DNA RNA protein Transcription Translation The expression of genetic information stored.
12.3 DNA, RNA, and Protein Objective: 6(C) Explain the purpose and process of transcription and translation using models of DNA and RNA.
Section 2 CHAPTER 10. PROTEIN SYNTHESIS IN PROKARYOTES Both prokaryotic and eukaryotic cells are able to regulate which genes are expressed and which.
 The central concept in biology is:  DNA determines what protein is made  RNA takes instructions from DNA  RNA programs the production of protein.
Nucleic Acids Comparing DNA and RNA. Both are made of nucleotides that contain  5-carbon sugar,  a phosphate group,  nitrogenous base.
Complexities of Gene Expression Cells have regulated, complex systems –Not all genes are expressed in every cell –Many genes are not expressed all of.
Genetics Review Honors Human Anatomy & Physiology Mr. Mazza
RNA and Gene Expression BIO 224 Intro to Molecular and Cell Biology.
CS173 Lecture 9: Transcriptional regulation III
PLANT BIOTECHNOLOGY & GENETIC ENGINEERING (3 CREDIT HOURS) LECTURE 13 ANALYSIS OF THE TRANSCRIPTOME.
The Central Dogma of Molecular Biology DNA  RNA  Protein  Trait.
Gene Expression DNA, RNA, and Protein Synthesis. Gene Expression Genes contain messages that determine traits. The process of expressing those genes includes.
Using DNA Subway in the Classroom Genome Annotation: Red Line.
Molecular Genetics - From DNA to Trait Traits DNA To.
Genetic Code and Interrupted Gene Chapter 4. Genetic Code and Interrupted Gene Aala A. Abulfaraj.
From Gene to Protein: Transcription & RNA Processing
Section 3: DNA, RNA, and Protein
CS273A Lecture 2: Protein Coding Genes
The Ribosome Is part of the cellular machinery for translation, polypeptide synthesis Figure 17.1.
The Basics of Molecular Biology
Enzymes and their functions involved in DNA replication
RNA and Protein Synthesis
Transcription.
Transcription.
From Gene to Protein: Transcription & RNA Processing
What is RNA? Do Now: What is RNA made of?
Chapter 17 Hon. Adv. Biology Notes 12/01/06
Control of Gene Expression in Eukaryotic cells
Daily Warm-Up Dec. 11th -What are the three enzymes involved with replication? What is the function of each? Homework: -Read 13.1 Turn in: -Nothing.
Central Dogma Central Dogma categorized by: DNA Replication Transcription Translation From that, we find the flow of.
AH Biology: Unit 1 Proteomics and Protein Structure 1
RNA and Protein Synthesis
Chapter 6: Transcription and RNA Processing in Eukaryotes
From DNA to Protein Class 4 02/11/04 RBIO-0002-U1.
credit: modification of work by NIH
RNA and Protein Synthesis
Gene Structure.
Gene Structure.
Presentation transcript:

[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 3: Protein coding genes

[BejeranoWinter12/13] 2 Annonuncements is uphttp://cs173.stanford.edu/ – Course guidelines, lecture slides, etc. Communications via Pizza – Private Q: post to “instructors” not “class” – Auditors sign up too – Office hours TBA before HW1 Project groups: TBD after “shopping season” Tutorials: first three Wednesdays – Recommended to bring your laptop to UCSC tutorial 1/16 We will be recruiting for our lab from class – Many other labs on campus would love to have you too!

[BejeranoWinter12/13] 3 TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATA CATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTC AGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTC CGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACT AGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATG ATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAA AAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAAT TGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA TTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGG ATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGAT TTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAAT CTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG AACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATC ATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAA AAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCA GCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAA CTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGA TAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTT GGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTT CTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGT TTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATAC CTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCT TGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTA AGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGA GTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACA GCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAAC CAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAA CACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTG GTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTC TCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAAT GCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCT TGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT TCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCT ATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT TCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGA GATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTA TCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTT CATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTT CAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAA TAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGT ATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG

Central Dogma of Biology

[BejeranoWinter12/13] 5 Genomes, Genes & Proteins The most visible instructions in our genome are Genes. Genes explain exactly HOW to synthesize any protein. Proteins are the work horses of every living cell....ACGTACGACTGACTAGCATCGACTACGACTAGCAC... gene Genome: cell protein

Gene Structure [BejeranoWinter12/13] 6

Gene Processing 7 [BejeranoWinter12/13]

Translation: The Genetic Code 8 [BejeranoWinter12/13]

The gene centric genome 9 [BejeranoWinter12/13] “The Genetic code” A gene centric term. For a gene centric world. But fashions change. Controlled by mass media, technology, money, and a bit of scientific truth.

Visualizing Gene Structure [BejeranoWinter12/13] 10

Genes in the Human Genome 11 [BejeranoWinter12/13] There are ~25,000 protein coding genes in the human genome. (Even half way through sequencing the human genome, Researchers thought there will be well over 100,000 genes).

12 Everything in Genomics is a Moving Target The genomes (ie, assemblies) Their annotations Our understanding of Biology The portals Conclusion: write code that can be run... and rerun Why ~25,000? [BejeranoWinter12/13]

13 Gene Finding I: ab initio Challenge: “Find the genes, the whole genes, and nothing but the genes” Understand Biology  Write discovery tools (Our) answer depends on our understanding, data & tools

[BejeranoWinter12/13] 14 Gene (Protein really) Functions The most visible instructions in our genome are Genes. Genes explain exactly HOW to synthesize any protein. Proteins are the work horses of every living cell....ACGTACGACTGACTAGCATCGACTACGACTAGCAC... gene Genome: cell protein Just look at the cell. Lots and lots of different functions to perform. (“Only 20,000 genes”..)

[BejeranoWinter12/13] 15 First full draft of the Human Genome 2001 Human Genome Consortium (HGC) Celera

[BejeranoWinter12/13] 16 Biological Functions of the Human Gene Set [HGC, 2001] Focus on the X axis:

[BejeranoWinter12/13] 17 Molecular Functions of the Human Gene Set [Celera, 2001]

[BejeranoWinter12/13] 18 Biological vs. Molecular Function: Pathways Proteins with very different molecular functions participate to manifest a single biological function, for example: a pathway.

[BejeranoWinter12/13] 19 “Special” Function: Gene Regulation Gene 2,000 different proteins can bind specific DNA sequences. Proteins that regulate the transcription of other proteins are called transcription factors. Proteins DNA Protein binding site

[BejeranoWinter12/13] 20 The Importance of Gene Regulation The looks & capabilities of different cells are determined by the subset of genes they express. Different cell types express very different gene repertoires (from the same genome). To change its behavior a cell can change its transcriptional program. Think of it as a giant state machine…

[BejeranoWinter12/13] 21 “Special” Function: Cell Signaling Cells also talk with each other. They send and receive messages, and change their behavior according to messages they receive.

[BejeranoWinter12/13] 22 Signal Transduction Now its an even bigger state machine of individual state machines (=cells) talking with each other, orchestrating their individual activities.

[BejeranoWinter12/13] 23 Back to Genes & Their Functions Gene (DNA) sequence determines protein (AA) sequence, which determines protein (3D) structure, which determines protein’s function.

[BejeranoWinter12/13] 24 Protein Folding Protein folding is the challenge of deducing protein structure from protein sequence. It’s a tough one…

Gene Families, Gene Names 25 [BejeranoWinter12/13] Genes (proteins) come in families. Genes of the same family have similar sequences. Which is why the fold into similar structure and perform similar functions. Genes of the same family will typically have a “family name” followed by a (sequential) number or “first name”.

Alternative Splicing 26 [BejeranoWinter12/13]

Genes in the Human Genome 27 [BejeranoWinter12/13] When you only show one transcript per gene locus: If you ask the GUI to show you all well established gene variants:

[BejeranoWinter12/13] 28 Protein Domains A protein domain is a subsequence of the protein that folds independently of the other portions of the sequence, and often confers to the protein one or more specific functions. SKSHSEAGSAFIQTQQLHAAMADTFLEHMCRLDIDSAPITARNTG IICTIGPASRSVETLKEMIKSGMNVARMNFSHGTHEYHAETIKNV RTATESFASDPILYRPVAVALDTKGPEIRTGLIKGSGTAEVELKK GATLKITLDNAYMAACDENILWLDYKNICKVVEVGSKVYVDDGLI SLQVKQKGPDFLVTEVENGGFLGSKKGVNLPGAAVDLPAVSEKDI QDLKFGVDEDVDMVFASFIRKAADVHEVRKILGEKGKNIKIISKI ENHEGVRRFDEILEASDGIMVARGDLGIEIPAEKVFLAQKMIIGR CNRAGKPVICATQMLESMIKKPRPTRAEGSDVANAVLDGADCIML SGETAKGDYPLEAVRMQHLIAREAEAAMFHRKLFEELARSSSHST DLMEAMAMGSVEASYKCLAAALIVLTESGRSAHQVARYRPRAPII AVTRNHQTARQAHLYRGIFPVVCKDPVQEAWAEDVDLRVNLAMNV GKAAGFFKKGDVVIVLTGWRPGSGFTNTMRVVPVP

Alt. Splicing and Protein Repertoire 29 [BejeranoWinter12/13] Alternative splicing often produces protein variants that have a different domain composition, and thus perform different functions.

[BejeranoWinter12/13] 30 Retroposed Genes and Pseudogenes Pseudogenes (“dead genes”): Genomic sequences that resemble (originated from) genes that no longer make proteins. Retrogenes (“retrotranscribed”): Protein coding RNA that was reverse transcribed and inserted back into the genome. The RNA can be grabbed at any stage (partial/full transcript, before/during/after all introns are spliced).

Gene Ontologies 31 [BejeranoWinter12/13] 1.Make a controlled vocabulary of gene functions. 2.Annotate all genes using this vocabulary. Map: genes  papers  biological functions. (plenty room for Natural Language Processing) Used to catalog human gene functions, and also which genes are expressed where, what defects have been found when certain genes are mutated, etc.

Review Lecture 3 Central dogma recap –Focus on protein coding genes Gene structure –exon, intron, 3’/5’ utr, CDS recap –The genetic code –UCSC genome browser sneak peak –human genome stats –Gene finding I: ab initio Gene (protein) function –Cell structure, chemical reactions etc –Pathways (vs. function) –information processing roles TFs signaling: ligands, receptors, kinases Gene families –similar sequence -> structure -> function –protein domains –splice variants, alt promoters Special cases –Pseudogenes –Retroposed genes (and the distinction between the two) Gene ontologies [BejeranoWinter12/13] 32