Correlation & Causal Comparative Research Class 6 Noon meetings today: Trevor & Anna
Assignment for Tuesday Revise Introduction Accept/reject edits Answer questions/address comments Research Question Specific single “thing” you are trying to determine Example: Is there a correlation b/w math achievement and rhythm reading achievement among students in grades 1, 3, & 5? No Need for Hypothesis Definitions – standard vs. author created Limitations = who/what you are NOT examining that are not obvious Think in the negative to determine these Rough draft of measurement instrument
APA Format Headers Chapter title = Level 1 Others = Level 2 (Flush left) Remember title page, page #s Running Head ≤ 50 characters total. Goes in the header flush left Research Question after purpose statement & before need for study (Header?) Commas = …apples, oranges, and grapes. Citation before period and after end quotation mark. No page number needed unless you are citing a quote. Two spaces b/w sentences; 1 space b/w reference elements! Spacing: Double space, paragraph set to 0, no additional spaced added.
Two Types of Inferential Stats Parametric Interval & ratio data Normal or near normal curve (distribution) Equal variances (Levene’s test) Sample reflects pop. (randomized) Most powerful Non-Parametric Nominal & Ordinal data Not normal distribution (skewness or kurtosis) Unequal variances Less powerful More conservative
Review: T-tests Used to determine statistically significant differences between two independent or dependent groups. Independent – groups do not have to be even. Different people Dependent – groups must be even. Same people or matched pairs n = < 30 for each group. Though many researchers have used the t test with larger groups.
Sum of the sq Sum of raw scores Sum of sq raw scores Var. = avg. ss/n-1 SD = sq. root var.
Non-Parametric T-Tests Mann-Whitney U test [independent samples] Wilcoxon signed ranks test [dependent samples] Ordinal data (Likert data, contest ratings, other data not meeting assumptions for parametric stats) Checks for significant difference b/w average (mean) ranks of the data Is there a significant difference b/w ratings of contest judges (1 vs. 2; 1 vs. 3; 2 vs. 3) Independent or dependent? Which test? Difference b/w solo ratings of HS choir students from 2014 to 2015? Solo 2014Solo
Review: ANOVA (use ACT Explore test data from Day 4) Analyze means of 2+ groups Homogeneity of variance Independent or correlated (paired) groups More rigorous than t-test (b/w group & w/i group variance). Often used today instead of T test. F statistic One-Way = 1 independent variable Two-Way/Three-Way = 2-3 independent variables (one active & one or two an attribute)
One-Way ANOVA Calculate a One-Way ANOVA for data-set Difference b/w subject tests for 2007 Non-band students? (correlated) Implications? Difference b/w reading scores for non-band students 2007/2008/2009 Post Hoc tests Used to find differences b/w groups using one test. You could compare all pairs w/ individual t tests or ANOVA, but leads to problems w/ multiple comparisons on same data Bonferroni correction – reduce alpha to compensate for multiple comparisons. (.05/N comparisons) Tukey – Equal Sample Sizes (though can be used for unequal sample sizes as well) [HSD = honest significant difference] Sheffe – Unequal Sample Sizes (though can be used for equal sample sizes as well)
Composite ACT Explore scores, MS (mean squares) = SS/df F = MS treatment/MS error [w/i groups]
Two Way ANOVA (2X2) [see data set day 5]
Interpreting Results of 2x2 ANOVA (columns) CAI was more effective than Traditional methods for both high and low achieving students (rows) High Achieving students scored significantly higher than Low achieving students, regardless of teaching method There was no significant interaction between rows & columns If there was significant interaction, we would need to do post hoc Tukey or Sheffe do determine where the differences lie.
ANCOVA – Analysis of Covariance [data set day 5] Statistical control for unequal groups Adjusts posttest means based on pretest means. [example – see data set] [The homogeneity of regression assumption is met if within each of the groups there is an linear correlation between the dependent variable and the covariate and the correlations are similar b/w groups]
Correlational Research
Correlational Research Basics Relationships among two or more variables are investigated The researcher does not manipulate the variables Direction (positive [+] or negative [-]) and degree (how strong) in which two or more variables are related Uses Clarifying and understanding important phenomena (relationship b/w variables—e.g., height and voice range in MS boys) Explaining human behaviors (class periods per weeks correlated to practice time) Predicting likely outcomes (one test predicts another)
Correlation Research Basics Particularly beneficial when experimental studies are difficult or impossible to design Allows for examinations of relationships among variables measured in different units (decibels, pitch; retention numbers and test scores, etc.) DOES NOT indicate causation Reciprocal effect (a change in weight may affect body image, but body image does not cause a change in weight) Third (other) variable actually responsible for difference (Tendency of smart kids to persist in music is cause of higher SATs among HS music students rather than music study itself)
Interpreting Correlations r Correlation coefficient (Pearson = r; Spearman = r s ) Can range from to Direction Positive As X increases, so does Y and vice versa Negative As X decreases, Y increases and vice versa Degree or Strength (rough indicators) ; weak ; moderate ; strong ; very strong 1.0 = perfect r 2 (% of shared variance) Overlap b/w two variables Percent of the variation in one variable that is related to the variation in the other. Example: Correlation b/w musical achievement and minutes of instruction is r =.86. What is the % of shared variance (r 2 )? Easy to obtain significant results w/ correlation. Strength is most important
Interpreting Correlations (cont.) Words typically used to describe correlations Direct (Large values w/ large values or small values w/ small values. Moving parallel. 0 to +1 Indirect or inverse (Large values w/small values. Moving in opposite directions. 0 to -1 Perfect (exactly 1 or -1) Strong, weak High, moderate, low Positive, Negative Correlations vs. Mean Differences Groups of scores that are correlated will not necessarily have similar means. Correlation also works w/ different units of measurement
Statistical Assumptions The mathematical equations used to determine various correlation coefficients carry with them certain assumptions about the nature of the data used… Level of data (types of correlation for different levels) Normal curve (Pearson, if not-Spearman) Linearity (relationships move parallel or inverse) Young students initially have a low level of performance anxiety, but it rises with each performance as they realize the pressure and potential rewards that come with performance. However, once they have several performances under their belts, the anxiety subsides. (non linear relationship of # of performances & anxiety scores) Presence of outliers (all) Homoscedascity – relationship consistent throughout Performance anxiety levels off after several performances and remains static (relationship lacks Homoscedascity) Subjects have only one score for each variable Minimum sample size needed for significance
Correlational Approaches for Assessing Measurement Reliability Consistency over time test-retest (Pearson, Spearman) Consistency within the measure internal consistency (split-half, KR-20, Cronbach ’ s alpha) Among judges Interjudge (Cronbach ’ s Alpha) Consistency b/w one measure and another (Pearson, Spearman)
Reliability of Survey What broad single dimension is being studied? e.g. = attitudes towards elementary music Preference for Western art music “People who answered a on #3 answered c on #5” Use Cronbach’s alpha Measure of internal consistency Extent to which responses on individual items correspond to each other
Examples Calculate the Pearson correlation between each a subject test and combined score on the ACT Explore for (each take one subject) Calculate a Spearman Correlation for Contest ratings each judge vs. final rating Calculate internal consistency (reliability) of all three judges using Cronbach’s alpha.
Other Stats
Chi-Squared Measure statistical significance b/w frequency counts (nominal/categorical data) Test for independence/association: Compare 2 or more proportions Example: Proportion of females to males in choirs at 2 district HSs. Goodness of Fit: compare w/ you have with what is expected Example: Proportions of females to males in choir compared to school population MalesFemales School A Choir School B Choir MalesFemales HS Choir HS Population/exp. 548/47 625/53
Effect Size (Cohen’s d) [Mean of Experimental group – Mean of Control group/average SD] The percentile standing of the average experimental participant (at 50 th percentile) if they were ranked in the experimental group. where someone ranked in the 50 th percentile in the experimental group would be ranked in the control group Effect sizes can also be interpreted in terms of the percent of nonoverlap of the treated group's scores with those of the untreated group. Use table to find where someone ranked in the 50 th percentile in the experimental group would be in the control group Good for showing practical significance When test in non-significant When both groups got significantly better (really effective vs. really really effective! Calculate effect size: Pretest: M=10.8; SD= 5.7 Posttest: M=24.6; SD=4.3
Effect Size (d) Interpretation