Introduction to IR Research Methodology ChengXiang Zhai Department of Computer Science University of Illinois, Urbana-Champaign http://www.cs.uiuc.edu/homes/czhai, czhai@cs.uiuc.edu
Outline What is research? How to prepare yourself for research? How to identify a good research problem? How to identify, frame, and refine an IR research problem? How to formulate and test IR research hypotheses? How to write and publish an IR paper?
Part 1. What is research?
What is Research? Research is to Basic research Applied research Discover new knowledge Seek answers to questions Basic research Often driven by curiosity for fundamental/general knowledge/understanding High impact examples: relativity theory, DNA, … Applied research Driven by practical needs High impact examples: computers, transistors, vaccinations, … The boundary is vague, and distinction isn’t important, but all require innovations and discovery of new knowledge; others must be able to learn something new from your work that they can’t learn from any existing literature
Why Research? Funding Curiosity Quality of Life Utility of Applications Advancement of Technology Amount of knowledge Application Development Applied Research Basic Research
Where’s IR Research? Funding Quality of Life Utility of Applications Information Science Advancement of Technology Amount of knowledge Computer Science Application Development Applied Research Basic Research
Different position benefits from different collaborators Where’s Your Position? Different position benefits from different collaborators Quality of Life Utility of Applications Advancement of Technology Amount of knowledge Application Development Applied Research Basic Research
Research Process Identification of a topic & raise a research question research question = question with no answer, or no good answer described in any literature Hypothesis formulation offer a (possible) answer to the research question formulate a hypothesis based on your answer (e.g., “your new method better than an existing method”) Design experiments to test hypothesis (e.g., compare X and Y on the data) Draw conclusions and repeat the cycle if needed
Research Methods Exploratory research: Identify and frame a new problem (e.g., “a survey/outlook of personalized search”) Constructive research: Construct a (new) solution to a problem (e.g., “a new method for expert finding”) Empirical research: evaluate and compare existing solutions (e.g., “a comparative evaluation of link analysis methods for web search”) The “E-C-E cycle”: exploratoryconstructiveempiricalexploratory…
Types of Research Questions and Results Exploratory (Framework): What’s out there? Descriptive (Principles): What does it look like? How does it work? Evaluative (Empirical results): How well does a method solve a problem? Explanatory (Causes): Why does something happen the way it happens? Predictive (Models): What would happen if xxx ?
Solid and High Impact Research Solid work: A clear hypothesis (research question) with conclusive result (either positive or negative) Clearly adds to our knowledge base (can we really learn something new from this work?) Implications: a solid, focused contribution is often better than a non-conclusive broad exploration High impact = high-importance-of-problem * high-quality-of-solution high impact = open up an important problem high impact = close a problem with the best solution high impact = major milestones in between Implications: question the importance of the problem and don’t just be satisfied with a good solution, make it the best
Part 2. How to prepare yourself for research?
What It Takes to Do Research Curiosity: allow you to ask questions Critical thinking: allow you to challenge assumptions Learning: take you to the frontier of knowledge Persistence: so that you don’t give up Respect data and truth: ensure your research is solid Communication: allow you to publish your work …
Critical Thinking Develop a habit of asking questions, especially why questions Always try to make sense of what you have read/heard; don’t let any question pass by Get used to challenging everything Practical advice Question every claim made in a paper or a talk (can you argue the other way?) Try to write two opposite reviews of a paper (one mainly to argue for accepting the paper and the other for rejecting it) Force yourself to challenge one point in every talk that you attend and raise a question
Respect Data and Truth Be honest with the experiment results Don’t throw away negative results! Try to learn from negative results Don’t twist data to fit your hypothesis; instead, let the hypothesis choose data Be objective in data analysis and interpretation; don’t mislead readers Aim at understanding/explanation instead of just good results Be careful not to over-generalize (for both good and bad results); you may be far from the truth
Communications General communication skills: Oral and written Formal and informal Talk to people with different level of backgrounds Be clear, concise, accurate, and adaptive (elaborate with examples, summarize by abstraction) English proficiency Get used to talking to people from different fields
Persistence Work only on topics that you are passionate about Work only on hypotheses that you believe in Don’t draw negative conclusions prematurely and give up easily positive results may be hidden in negative results In many cases, negative results don’t completely reject a hypothesis Be comfortable with criticisms about your work (learn from negative reviews of a rejected paper) Think of possibilities of repositioning a work (what you learn from an unsuccessful exploration can often inspire a new interesting research direction)
Optimize Your Training Know your strengths and weaknesses strong in math vs. strong in system development creative vs. thorough … Train yourself to fix weaknesses Find strategic partners Position yourself to take advantage of your strengths
Part 3. How to identify a good research problem?
What is a Good Research Problem? Well-defined: Would we be able to tell whether you’ve solved the problem? Highly important: Who would really care about the solution to the problem? Does it solve a big pain? Identify fundamental problems Dream big to identify novel application opportunities Solvable: Is there any clue about how to solve it? Do you have a baseline approach? Do you have the needed resources? Matching your strength: Are you good at solving this kind of problems?
Challenge-Impact Analysis Level of Challenges High impact High risk (hard) Good long-term research problems Difficult basic research Problems, but questionable impact High impact Low risk (easy) Good short-term research problems Novel application research problems Low impact Low risk Bad research problems (May not be publishable) Unknown “entry point” problems Good applications Not interesting for research Known Impact/Usefulness
Optimizing “Research Return”: Pick a Problem Best for You High (Potential) Impact Your Passion Your Strength Best problems for you Find your passion: If you don’t have to work/study for money, what would you do? Test of impact: If you are given $1M to fund a research project, what would you fund? Find your strength/Avoid your weakness: What are you (not) good at?
How to Find a Problem? Application-driven (Find a nail, then make a hammer) Identify a need by people/users that cannot be satisfied well currently (“complaints” about current data/information management systems?) How difficult is it to solve the problem? No big technical challenges: do a startup Lots of big challenges: write a research proposal Identify one technical challenge as your topic Formulate/frame the problem appropriately so that you can solve it Aim at a completely new application/function (find a high-stake nail)
How to Find a Problem? (cont.) Tool-driven (Hold a hammer, and look for a nail) Choose your favorite state-of-the-art tools Ideally, you have a “secret weapon” Otherwise, bring tools from area X to area Y Look around for possible applications Find a novel application that seems to match your tools How difficult is it to use your tools to solve the problem? No big technical challenges: do a startup Lots of big challenges: write a research proposal Identify one technical challenge as your topic Formulate/frame the problem appropriately so that you can solve it Aim at important extension of the tool (find an unexpected application and use the best hammer)
How to Find a Problem? (cont.) In practice, you do both in various kinds of ways You use your imagination, or talk to people in application domains to identify new “nails” You take courses and read literature to acquire newest or powerful “hammers” You check out related areas for both new “nails” and new “hammers” You read visionary papers and the “future work” sections of research papers, and then take a problem from there …
Part 4. How to identify, frame, and refine an IR research problem?
Three Basic Questions to Ask about an IR Problem Everyone (who has an Internet connection) The whole web (indexed by Google) Search (by keywords) Who are the users? Everyone vs. Small group of people What data do we have? Web (whole web vs. sub-web) Email (public email vs. personal email) Literature (general vs. special discipline) Blog, forum, … What functions do we want to support? Information access vs. knowledge acquisition Decision and task support
The Data-User-Service (DUS) Triangle Services=? The Data-User-Service (DUS) Triangle offers a general conceptual framework for designing any intelligent information system
Millions of Ways to Connect the DUS Triangle! … Customer Service People UIUC Employees Everyone Scientists Online Shoppers Web Search Literature Assistant Web pages Enterprise Search Opinion Advisor Customer Rel. Man. Literature Organization docs Blog articles Product reviews … Customer emails … Task/Decision support Search Browsing Alert Mining
High-Level Challenges in IR How to develop robust, effective, and efficient methods for a particular application? Methods need to “work all the time” without failure Methods need to be accurate enough to be useful Methods need to be efficient enough to be useful How to make use of imperfect IR techniques to do something definitely useful? Save human labor (e.g., partially automate a task) Create “add on” value (e.g., literature alert) A lot of HCI issues (e.g., allowing users to control) How to develop more intelligent general IR techniques to support many different applications?
Challenge 1: Optimize Search How to infer a user’s information need accurately? How to understand content of documents? How to match a user’s information need and content of a document? How to support interactive search in an optimal way? How to help users when their queries don’t work well? (long tail queries)
Challenge 2: From Search to Information Access Search is only one way to access information Browsing and recommendation are two other ways How can we effectively combine these three ways to provided integrated information access? E.g., artificially linking search results with additional hyperlinks, “literature pop-ups”…
Challenge 3: From Information Access to Task Support The purpose of accessing information is often to perform some tasks How can we go beyond information access to support a user at the task level? E.g., automatic/semi-automatic email reply for customer service, literature information service for paper writing (suggest relevant citations, term definitions, etc), comparing prices for shoppers
Challenge 4: Support Whole Life Cycle of Information A life cycle of information consists of “creation”, “storage”, “transformation”, “consumption”, “recycling”, etc Most existing applications support one stage (e.g., search supports “consumption”) How can we support the whole life cycle in an integrated way? E.g., Community publication/subscription service (no need for crawling, user profiling)
Challenge 5: Collaborative Information Management Users (especially similar users) often have similar information need Users who have explored the information space can share their experiences with other users How to exploit the collective expertise of users and allow users to help each other? E.g., allowing “information annotation” on the Web (“footprints”), collaborative filtering/retrieval,
Look for New IR Research Questions Driven by new data: X is a new type of data emerging (e.g., X= blog vs. news) How is X different from existing types of data? What new issues/problems are raised by X? Are existing methods sufficient for solving old problems on X? If not, what are the new challenges? What new methods are needed? Are old evaluation measures adequate? Driven by new users: Y is a set of new users (e.g., ordinary people vs. librarians) How are the new users different from old ones? What new needs do they have? Can existing methods work well to satisfy their needs? If not, what are the new challenges? What new functions are appropriate for Y? Driven by new tasks (not necessarily new users or new data): Z is a new task (e.g., social networking, online shopping) What information management functions are needed to better support Z? Can these new functions reduced to old ones? If not, what are the new challenges?
General Steps to Define a Research Problem Generate and Test Raise a question Novelty test: Figure out to what extent we know how to answer the question There’s already an answer to it: Is the answer good enough? Yes: not interesting, but can you make the question more challenging? No: your research problem is how to get a better answer to the raised question No obvious answer: you’ve got an interesting problem to work on Tractability test: Figure out whether the raised question can be answered I can see a way to answer it or potentially answer it: you’ve got a solvable problem I can’t easily see a way to answer it: Is it because the question is too hard or you’ve not worked hard enough? Try to reframe the problem to make it easier Evaluation test: Can you obtain a data set and define measures to test solutions/answers? Yes: you’ve got a clearly defined problem to work on No: can you think of anyway to indirectly test the solutions/answers? Can you reframe the problem to fit the data? Every time you reframe a problem, try to do all the three tests again.
Frame a New Computation Task Define basic concepts Specify the input Specify the output Specify any preferences or constraints
From a new application to a clearly defined research problem Try to picture a new system, thus clarify what new functionality is to be provided and what benefit you’ll bring to a user Among all the system modules, which are easy to build and which are challenging? Pick a challenge and try to formalize the challenge What exactly would be the input? What exactly would be the output? Is this challenge really a new challenge (not immediately clear how to solve it)? Yes, your research problem is how to solve this new problem No, it can be reduced to some known challenge: are existing methods sufficient? Yes, not a good problem to work on No, your research problem is how to extend/adapt existing methods to solve your new challenge Tuning the problem
Tuning the Problem Unknown Known Level of Challenges Make an easy problem harder Increase impact (more general) Make a hard problem easier Unknown Known Impact/Usefulness
“Short-Cut” for starting IR research Scan most recently published papers to find papers that you like or can understand Read such papers in detail Track down background papers to increase your understanding Brainstorm ideas of extending the work Start with ideas mentioned in the future work part Systematically question the solidness of the paper (have the authors answered all the questions? Can you think of questions that aren’t answered?) Is there a better formulation of the problem Is there a better method for solving the problem Is the evaluation solid? Pick one new idea and work on it
Part 5. How to formulate and test IR research hypotheses?
Formulate Research Hypotheses Typical hypotheses in IR: Hypothesis about user characteristics (tested with user studies or user-log analysis, e.g., clickthrough bias) Hypothesis about data characteristics (tested with fitting actual data, e.g., Zipf’s law) Hypothesis about methods (tested with experiments): Method A works (or doesn’t work) for task B under condition C by measure D (feasibility) Method A performs better than method A’ for task B under condition C by measure D (comparative) Introduce baselines naturally lead to hypotheses Carefully study existing literature to figure our where exactly you can make a new contribution (what do you want others to cite your work as?) The more specialized a hypothesis is, the more likely it’s new, but a narrow hypothesis has lower impact than a general one, so try to generalize as much as you can to increase impact But avoid over-generalize (must be supported by your experiments) Tuning hypotheses
Procedure of Hypothesis Testing Clearly define the hypothesis to be tested (include any necessary conditions) Design the right experiments to test it (experiments must match the hypothesis in all aspects) Carefully analyze results (seek for understanding and explanation rather than just description) Unless you’ve got a complete understanding of everything, always attempts to formulate a further hypothesis to achieve better understanding
Clearly Define a Hypothesis A clearly defined hypothesis helps you choose the right data and right measures Make sure to include any necessary conditions so that you don’t over claim Be clear about any justification for your hypothesis (testing a random hypothesis requires more data than testing a well-justified hypothesis)
Design the Right Experiments Flawed experiment design is a common cause of rejection of an IR paper (e.g., a poorly chosen baseline) The data should match the hypothesis A general claim like “method A is better than B” would need a variety of representative data sets to prove The measure should match the hypothesis Multiple measures are often needed (e.g., both precision and recall) The experiment procedure shouldn’t be biased Comparing A with B requires using identical procedure for both Common mistake: baseline method not tuned or not tuned seriously Test multiple hypotheses simultaneously if possible (for the sake of efficiency)
Carefully Analyze the Results Do the significance test if possible/meaningful Go beyond just getting a yes/no answer If positive: seek for evidence to support your original justification of the hypothesis. If negative: look into reasons to understand how your hypothesis should be modified In general, seek for explanations of everything! Get as much as possible out of the results of one experiment before jumping to run another Don’t throw away negative data Try to think of alternative ways of looking at data
Modify a Hypothesis Don’t stop at the current hypothesis; try to generate a modified hypothesis to further discover new knowledge If your hypothesis is supported, think about the possibility of further generalizing the hypothesis and test the new hypothesis If your hypothesis isn’t supported, think about how to narrow it down to some special cases to see if it can be supported in a weaker form
Derive New Hypotheses After you finish testing some hypotheses and reaching conclusions, try to see if you can derive interesting new hypotheses Your data may suggest an additional (sometimes unrelated) hypothesis; you get a by-product A new hypothesis can also logically follow a current hypothesis or help further support a current hypothesis New hypotheses may help find causes: If the cause is X, then H1 must be true, so we test H1
Part 6: How to write and publish an IR paper?
When to Write a Paper? Survey/Review paper: An emerging field or topic has appeared (i.e., a hot topic) but no survey is available, or sufficient new development has occurred such that existing surveys are out of date You’ve read and digested enough papers about the topic Original research paper: when you have sufficient results to draw an interesting conclusion or answer an interesting research question, i.e., you’ve got a basic story to tell, e.g., A new problem, a solution, and results showing how good the solution is An old problem, a new solution, and results showing advantage(s) of the new solution over the old ones An old problem, many old solutions, and results showing an understanding of their relative performance In general, a research question and an answer
Before you write any paper, be clear about the targeted readers
Typical Structure of a Survey Paper Introduction: Motivation for the survey An emerging field/topic, but no survey available Surveys exist, but they are out of date (e.g., due to new development in a field/topic) Scope of the survey Background (if necessary) Conceptual framework ( based on synthesis of the literature) Define basic concepts, terminology, etc Give a big picture of the topic so that your survey is coherent
Typical Structure of a Survey Paper (cont.) Systematic review of existing work It’s very important that you have some clear structure for this part The structure is usually your conceptual framework, or other meaningful structures (e.g., by time or some way to classify all the work) Be critical! Add your opinions about the work surveyed Don’t treat every work equally; elaborate on some representative work and simply give pointers to other work Summary Summarize the progress and the state of the art Give recommendations if any (e.g., for practitioners) Outlook (remaining challenges, future directions) References
Typical Structure of a Research Paper 1. Introduction Background discussion to motivate your problem Define your problem Argue why it’s important to solve the problem Identify knowledge gap in existing work or point out deficiency of existing answers/solutions Summarize your contributions Briefly mention potential impact Tips: Start with sentences understandable to almost everyone Tell the story at a high-level so that the entire introduction is understandable to people with no/little technical background in the topic Use examples if possible
Typical Structure of a Research Paper (cont.) 2. Previous/Related work Sometimes this part is included in the introduction or appears later Previous work = work that you extend (readers must be familiar with it to understand your contribution) Related work = work related to your work (readers can until later in the paper to know about it) Tips: Make sure not to miss important related work Always safer to include more related work Discuss the existing work and its connection to your work Your work extends … Your work is similar to … but differs in that … Your work represents an alternative way of … Whenever possible, explicitly discuss your contribution in the context of existing work
Typical Structure of a Research Paper (cont.) 3. Problem definition/formulation Clearly define your problem If it’s a new problem, discuss its relation to existing related problems If it’s an old problem, cite the previous work Justify why you define the problem in this way Discuss challenges in solving the problem Tips: Give both an informal description and a formal description if possible Make sure that you mention any assumption you make when defining the problem (e.g., your focus may be on studying the problem in certain conditions)
Typical Structure of a Research Paper (cont.) 4. Overview of the solution(s) (can be merged with the next part) Give a high-level information description of the proposed solutions or solutions you study Use examples if possible 5. Specific components of your solution(s) Be precise (formal description helps) Use intuitive descriptions to help people understand it Tips: make sure that you organize this part so that it’s understandable to people with various backgrounds Don’t just throw in formulas; include high-level intuitive descriptions whenever possible
Typical Structure of a Research Paper (cont.) 6. Experiment design: make sure you justify it Data set Measures Experiment procedure Tips: Given enough details so that people can reproduce your experiments Discuss limitation/bias if any, and discuss its potential influence on your study
Typical Structure of a Research Paper (cont.) 7. Result analysis: Organized based on research questions to be answered or hypotheses tested Be comprehensive, but focus on the major conclusions Include “standard” components Baseline comparison Individual component analysis Parameter sensitivity analysis Individual query analysis Significance test Discuss the influence of any bias or limitation Tips Don’t leave any question unanswered (try to provide an explanation for all the observed results) Discuss your findings in the context of existing work if possible Similar observations have also been made in … This is in contrast to … observed in … One explanation is ….
Typical Structure of a Research Paper (cont.) 8. Conclusions and future work Summarize your contributions Discuss its potential impact Discuss its limitation and point out directions for future work 9. References
Tips on Polishing your Paper Start with the core messages you want to convey in the paper and expand your paper by following the core story Try to convey the core messages at different levels so that people with different knowledge background can all get them Try to write a review of your paper yourself, commenting on its originality, technical soundness, significance, evaluation, etc, and then revise the paper if needed Check out reviewer’s instructions, e.g., the following: http://nips07.stanford.edu/nips07reviewers.html (not necessarily matching your conference, but should share a lot of common requirements) Try to polish English as much as you can
What an IR reviewer often looks for Most important factors: Realistic setup of a retrieval problem What kind of users would benefit from your research? Solid evaluation of methods Truly state of the art baseline Careful selection of data sets Use as many representative data sets as possible Always use a standard data set (e.g., TREC) if possible Careful definition of measures Unbiased experiment procedure General factors: Quality of argument, novelty, writing, … Avoid all kinds of careless mistakes! (If you aren’t careful about writing, it’s possible you aren’t careful about your experiments either.)
Where to Publish IR Papers Core IR conferences: ACM SIGIR, ACM CIKM ECIR, AIRS Core IR journals ACM TOIS, IRJ IPM, JASIS Web Applications WWW, WSDM Other related conferences Natural Language Processing: HLT, ACL, NAACL, COLING, EMNLP Machine Learning: ICML, NIPS Data Mining: KDD, ICDM Databases: SIGMOD, VLDB, ICDE …
After You Get Reviews Back Carefully classify comments into: Unreasonable comments (e.g., misunderstanding): Try to improve the clarity of your writing Reasonable comments Constructive: easy to implement Non-constructive: think about it, either argue the other way or mention weakness of your work in the paper If paper is accepted Take the last chance to polish the paper as much as you can You’ll regret if later you discover an inaccurate statement or a typo in your published paper If paper is rejected Digest comments and try to improve the research work and the paper Run more experiments if necessary Don’t try to please reviewers (the next reviewer might say something opposite); instead use your own judgments and use their comments to help improve your judgments Reposition the paper if necessary (again, don’t reposition it just because a reviewer rejected your original positioning)
Summary Research is about discovery and increase our knowledge (innovation & understanding) Intellectual curiosity and critical thinking are extremely important Creativity is a big plus! Work on important problems that you are passionate about Aim at becoming a top expert on one topic area Obtain complete knowledge about the literature on the topic (read all the important papers and monitor the progress) Write a survey if appropriate Publish one or more high-quality papers on the topic Don’t give up!