[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.

Slides:



Advertisements
Similar presentations
Genomics – The Language of DNA Honors Genetics 2006.
Advertisements

DNA Organization Lec 2. Aims The aims of this lecture is to investigate how cells organize their DNA within the cell nucleus, how is the huge amount of.
DNA Fingerprinting. DNA Structure Review Double stranded helix shape Basic unit is a nucleotide: Phosphate-sugar backbone Nitrogen bases hold two strands.
Module 12 Human DNA Fingerprinting and Population Genetics p 2 + 2pq + q 2 = 1.
Cloning lab results Cloning the human genome Physical map of the chromosomes Genome sequencing Integrating physical and recombination maps Polymorphic.
Restriction Enzymes and Gel Electrophoresis
[Bejerano Aut08/09] 1 MW 11:00-12:15 in Beckman B302 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean.
[Bejerano Fall10/11] 1 Any Project reflections?
[Bejerano Spr06/07] 1 TTh 11:00-12:15 in Clark S361 Profs: Serafim Batzoglou, Gill Bejerano TAs: George Asimenos, Cory McLean.
Genomes summary 1.>930 bacterial genomes sequenced. 2.Circular. Genes densely packed Mbases, ,000 genes 4.Genomes of >200 eukaryotes (45.
[Bejerano Fall10/11] 1 Primer, Friday 10am, Beckman B-302 Ex. 1 is coming.
[Bejerano Aut08/09] 1 MW 11:00-12:15 in Beckman B302 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean.
Chapter 9: Biotechnology
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 3:
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 7:
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
DNA basics DNA is a molecule located in the nucleus of a cell Every cell in an organism contains the same DNA Characteristics of DNA varies between individuals.
Genetics and Biotechnology
Gene Technology Chapters 11 & 13. Gene Expression 0 Genome 0 Our complete genetic information 0 Gene expression 0 Turning parts of a chromosome “on” and.
Genetic Engineering.
Chapter 9, Section 2 & 3 Regular Biology
Biotechnology SB2.f – Examine the use of DNA technology in forensics, medicine and agriculture.
Chapter 9 Biotechnology
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 11:
DNA Technology Chapter 20.
DNA Technology and Genomics Chapter 20 A. P. Biology Mr. Knowles Liberty Senior High School.
Selfish DNA Honors Genetics.
Class Notes 1: DNA Manipulation. I. DNA manipulation A. During recent years, scientists have developed a technique to manipulate DNA, enabling them to.
Manipulation of DNA. Restriction enzymes are used to cut DNA into smaller fragments. Different restriction enzymes recognize and cut different DNA sequences.
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
Genome Organization & Evolution. Chromosomes Genes are always in genomic structures (chromosomes) – never ‘free floating’ Bacterial genomes are circular.
Used for detection of genetic diseases, forensics, paternity, evolutionary links Based on the characteristics of mammalian DNA Eukaryotic genome 1000x.
Chapter 21 Eukaryotic Genome Sequences
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 10:
DNA Technology Chapter 11. Genetic Technology- Terms to Know Genetic engineering- Genetic engineering- Recombinant DNA- DNA made from 2 or more organisms.
[Bejerano Fall11/12] 1 MW 11:00-12:15 in Beckman B302 Profs: Serafim Batzoglou, Gill Bejerano TAs: Aaron Wenger & Jim Notwell.
Introduction to Biotechnology ~manipulating and analyzing DNA.
Main Idea #4 Gene Expression is regulated by the cell, and mutations can affect this expression.
1 DNA Polymorphisms: DNA markers a useful tool in biotechnology Any section of DNA that varies among individuals in a population, “many forms”. Examples.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Lecture 10 Genes, genomes and chromosomes
[BejeranoFall15/16] 1 MW 1:30-2:50pm in Clark S361* (behind Peet’s) Profs: Serafim Batzoglou & Gill Bejerano CAs: Karthik Jagadeesh.
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
Biology Unit Four H DNA Fingerprinting and Genetic Engineering
ZOO405 by Rania Baleela is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported LicenseRania BaleelaCreative Commons Attribution-
FLASH CARDS Click for Definition Genetic Engineering.
DNA Fingerprinting: The DNA of every individual is different. Loci where the human genome differs from individual to individual are called polymorphisms.
DO NOW What is a genome? In what year was the Human Genome Sequence completed? How different is your genome from Mrs. Schwichtenberg? (Give a percent)
KEY CONCEPT DNA sequences of organisms can be changed.
Biotechnology You Will Learn About… Transformation Cloning DNA Fingerprinting by Restriction Fragment Length Polymorphism (RFLP) What is the name of the.
9.1 Manipulating DNA KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Biotechnology.
Bioethics Writing Assignment
Chapter 9: Biotechnology
Genetics and Evolutionary Biology
CS273A Lecture 12: repetitive elements II
Introduction to Biotechnology
DNA Marker Lecture 10 BY Ms. Shumaila Azam
CS273A Lecture 7: Neutral evolution: repetitive elements
Scientists use several techniques to manipulate DNA.
Genome Projects Maps Human Genome Mapping Human Genome Sequencing
What kinds of things have been learned?
Evolution of eukaryote genomes
CS273A Lecture 10: Transcription Regulation III, Neutral evolution: repetitive elements [Bejerano Fall16/17]
The Human Genome Source Code
Genetic Engineering.
The Human Genome Source Code
The Human Genome Source Code
Presentation transcript:

[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos Achlioptas CS273A Lecture 9: Repetitive Elements

[BejeranoFall13/14] 2 Announcements HW1 done. HW2 enroute.

The Functional Genome [BejeranoFall13/14] 3 Type# in genome% of genome genes25,0002% ncRNA15,0001% cis elements1,000,000>10%

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATA CATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTC AGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTC CGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACT AGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATG ATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAA AAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAAT TGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA TTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGG ATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGAT TTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAAT CTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG AACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATC ATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAA AAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCA GCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAA CTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGA TAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTT GGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTT CTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGT TTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATAC CTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCT TGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTA AGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGA GTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACA GCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAAC CAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAA CACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTG GTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTC TCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAAT GCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCT TGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT TCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCT ATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT TCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGA GATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTA TCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTT CATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTT CAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAA TAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGT ATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG 4

[BejeranoFall13/14] 5 One Cell, One Genome, One Replication Every cell holds a copy of all its DNA = its genome. The human body is made of ~10 13 cells. All originate from a single cell through repeated cell divisions. cell genome = all DNA chicken ≈ copies (DNA) of egg (DNA) chicken egg cell division DNA strings = Chromosomes

[BejeranoFall13/14] 6 Every Genome is Different DNA Replication is imperfect – between individuals of the same species, even between the cells of an individual....ACGTACGACTGACTAGCATCGACTACGA... chicken egg...ACGTACGACTGACTAGCATCGACTACGA... functional junk TT CAT “anything goes” many changes are not tolerated chicken This has bad implications – disease, and good implications – adaptation.

[BejeranoFall13/14] 7 Drift, Negative & Positive Selection Neutral Drift Positive Selection Negative Selection Time

Human Mutation Rate per base pair per generation This refers to mutations that are not repaired Thus, there are at least six new mutations in each child that were not present in either parent Mutations range from the smallest possible (single base pair change) to the largest – whole genome duplication. Selection does not tolerate all of these mutation, but it sure does tolerate some. chicken egg chicken 8

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATA CATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTC AGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTC CGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACT AGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATG ATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAA AAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAAT TGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA TTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGG ATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGAT TTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAAT CTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATG AACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATC ATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAA AAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCA GCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAA CTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGA TAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTT GGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTT CTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGT TTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATAC CTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCT TGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTA AGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGA GTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACA GCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAAC CAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAA CACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTG GTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTC TCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAAT GCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCT TGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT TCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCT ATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT TCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGA GATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTA TCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTT CATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTT CAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAA TAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGT ATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG 9

Why this cartoon? [BejeranoFall13/14] 10

Sequences that repeat many times in the genome Take up cumulatively a whooping half of the genome Come in two major, very different, flavors [BejeranoFall13/14] 11 I II

[BejeranoFall13/14] 12 I. Interspersed Repeats / TEs [Adapted from Lunter]

[BejeranoFall13/14] 13

[BejeranoFall13/14] 14 DNA Transposons

[BejeranoFall13/14] 15 Genomic Transmission For repeat copies to accumulate through the generations they must make it into the germline cells (eggs & sperms). Equally true for any genomic mutation. cell genome = all DNA chicken ≈ copies (DNA) of egg (DNA) chicken egg cell division DNA strings = Chromosomes

[BejeranoFall13/14] 16 LINE & SINE Elements

[BejeranoFall13/14] 17 Retrovirus-like Elements

TE composition and assortment vary among eukaryotic genomes 20% 40% 60% 80% 100% Slime mold Budding yeast Fission yeast NeurosporaArabidopsis Rice Nematode Drosophila Mosquito Fugu Mouse Human DNA transposons LTR Retro. Non-LTR Retro. Feschotte & Pritham http://cs273a.stanford.edu [Bejerano Fall09/10]

[BejeranoFall13/14] 19 Repeat Ages

Figure from Ryan Gregory (2005) INTERSPECIES VARIATION IN GENOME SIZE WITHIN VARIOUS GROUPS OF ORGANISMS 20

The amount of TE correlate positively with genome size Plasmodium Slime mold Budding yeast Fission yeast Neurospora Arabidopsis Brassica Rice Maize Nematode Drosophila Mosquito Sea squirt Zebrafish Fugu Mouse Human Genomic DNA TE DNA Protein-coding DNA Mb Feschotte & Pritham http://cs273a.stanford.edu [Bejerano Fall09/10]

TEs Protein-coding genes The proportion of protein-coding genes decreases with genome size, while the proportion of TEs increases with genome size Gregory, Nat Rev Genet

[BejeranoFall13/14] 23

[BejeranoFall13/14] 24

[BejeranoFall13/14] 25 Repeat Insertions Can Break Things

[BejeranoFall13/14] 26 Repeat Insertions Can Become Functional

[BejeranoFall13/14] 27 Regulatory elements from obile Elements [Yass is a small town in New South Wales, Australia.] Co-option event, probably due to favorable genomic context

[BejeranoFall13/14] 28 Britten & Davidson Hypothesis: Repeat to Rewire! Enhancer structure reminder

The Road to Co-Option [BejeranoFall13/14] 29 Transposition Event Random Mutations Neutral decay Potential Co-Option States

[BejeranoFall13/14] 30 Inferring Phylogeny Using Repeats [Nishihara et al, 2006]

[BejeranoFall13/14] 31 Assemby Challenges

[BejeranoFall13/14] 32 Transposons as Genetics Engineering Tools Human Gene Therapy

[BejeranoFall13/14] 33 II. Simple Repeats Every possible motif of mono-, di, tri- and tetranucleotide repeats is vastly overrepresented in the human genome. These are called microsatellites, Longer repeating units are called minisatellites, The real long ones are called satellites. Highly polymorphic in the human population. Highly heterozygous in a single individual. As a result microsatellites are used in paternity testing, forensics, and the inference of demographic processes. There is no clear definition of how many repetitions make a simple repeat, nor how imperfect the different copies can be. Highly variable between species: e.g., using the same search criteria the mouse & rat genomes have 2-3 times more microsatellites than the human genome. They’re also longer in mouse & rat. AAAAAAAAA CACACACAC CAACAACAA

[BejeranoFall13/14] 34 DNA Replication

[BejeranoFall13/14] 35 Simple Repeats Create Funky DNA structures

[BejeranoFall13/14] 36 These Bumps Give The DNA Polymerase Hiccups

[BejeranoFall13/14] 37 Expandable Repeats and Disease

Restriction Enzymes Restriction enzymes recognize and make a cut within specific DNA sequences, known as restriction sites. This is usually a 4-6 base pair palindromic sequence. Naturally found in different types of bacteria Bacteria use restriction enzymes to protect themselves from foreign DNA Many have been isolated and sold for use in lab work [BejeranoFall13/14] 38 blunt end sticky end

DNA Fingerprint Basics DNA fragments of different size will be produced by a restriction enzyme that cuts at the points shown by the arrows. 39

DNA fragments are then separated based on size using gel electrophoresis. 40

DNA Fingerprinting can be used in paternity testing or murder cases. 41

[BejeranoFall13/14] 42 There are Tracks for it

[BejeranoFall13/14] 43 Interspersed vs. Simple Repeats From an evolutionary point of view transposons and simple repeats are very different. Different instances of the same transposon share common ancestry (but not necessarily a direct common progenitor). Different instances of the same simple repeat most often do not.

Categories are NOT mutually exclusive We already discussed repeat instances that became Coding exons Enhancers There are known genomic loci that Code for protein coding exons and act as enhancers Ditto for non-coding RNA + enhancer There are bi-direction exons Coding in both directions Coding and anti-sense non-coding Both non-coding [BejeranoFall13/14] 44

[BejeranoFall13/14] 45