Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach.

Slides:



Advertisements
Similar presentations
2.1 Angles and Their Measures
Advertisements

4.1 Radian and Degree Measure -Students will describe angles. -Students will use radian measure. -Students will use degree measure and convert between.
Chapter 6: Trigonometry 6.3: Angles and Radian Measure
Angles and Radian Measure Section 4.1. Objectives Estimate the radian measure of an angle shown in a picture. Find a point on the unit circle given one.
Sullivan Precalculus: Section 5.1 Angles and Their Measures
Section 5.1 Angles and Arcs Objectives of this Section Convert Between Degrees, Minutes, Seconds, and Decimal Forms for Angles Find the Arc Length of a.
Radian and Degree Measure
H.Melikian/12001 Recognize and use the vocabulary of angles. Use degree measure. Use radian measure. Convert between degrees and radians. Draw angles in.
Angles and Radian Measure Section 4.1. Objectives Estimate the radian measure of an angle shown in a picture. Find a point on the unit circle given one.
Sec 6.1 Angle Measure Objectives:
4.1 Radian and Degree Measure. Objective To use degree and radian measure.
I can use both Radians and Degrees to Measure Angles.
Section 4.1.  Trigonometry: the measurement of angles  Standard Position: Angles whose initial side is on the positive x-axis 90 º terminal 180 º 0º.
Section 1.1 Radian and Degree Measure Pages
Section 4.1 Radian and Degree Measure. We will begin our study of precalculus by focusing on the topic of trigonometry Literal meaning of trigonometry.
Chapter Radian and degree measurement. Objectives O Describe Angles O Use radian measure O Use degree measure and convert between and radian measure.
Angles and their Measures
Radian and Degree Measure Objectives: Describe Angles Use Radian and Degree measures.
Warm - up.
Chapter 5 Trigonometric Functions Section 5.1 Angles and Arcs.
6.1.2 Angles. Converting to degrees Angles in radian measure do not always convert to angles in degrees without decimals, we must convert the decimal.
Section 7.1 Angles and Their Measure. ANGLES An angle is formed by rotating a ray about its endpoint. The original ray is the initial side of the angle.
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach.
TRIGONOMETRY Trigonometry
Trigonometric Functions
Advanced Algebra II Advanced Algebra II Notes 10.2 continued Angles and Their Measure.
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Terms to know going forward Angle: 2 rays an initial side and a terminal side. Initial side Terminal side Positive angle goes counter clockwise. Negative.
Section 6.4 Radians, Arc Length, and Angular Speed Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Welcome Back to Precalculus
Chapter 4 Trigonometric Functions. Angles Trigonometry means measurement of triangles. In Trigonometry, an angle often represents a rotation about a point.
Copyright © Cengage Learning. All rights reserved. CHAPTER Radian Measure 3.
1 Copyright © Cengage Learning. All rights reserved. 5. The Trigonometric Functions 6.1 Angles and Their Measures.
MATHPOWER TM 12, WESTERN EDITION Chapter 4 Trigonometric Functions 4.1.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
4.1 Radian and Degree Measure Trigonometry- from the Greek “measurement of triangles” Deals with relationships among sides and angles of triangles and.
Radian and Degree Measure
Radians and Angles. Angle-formed by rotating a ray about its endpoint (vertex) Initial Side Starting position Terminal Side Ending position Standard Position.
Chapter 4 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
4.1 Day 2 Objectives: Find coterminal angles Find the length of a circular arc Use linear & angular speed to describe motion on a circular path Pg. 459.
Trigonometry Section 7.1 Find measures of angles and coterminal angle in degrees and radians Trigonometry means “triangle measurement”. There are two types.
An angle whose vertex is at the center of the circle is called a central angle. The radian measure of any central angle of a circle is the length of the.
Radian and Degree Measure Objectives: 1.Describe angles 2.Use radian measure 3.Use degree measure 4.Use angles to model and solve real-life problems.
MATH 1330 Section 4.2 Radians, Arc Length, and Area of a Sector.
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
FST Section 4.1. Tate lives three miles from school. He decided to ride his bicycle to school one nice day. If the front wheel turned at an average speed.
Section 4.1.  A ray is a part of a line that has only one endpoint and extends forever in the opposite direction.  An angle is formed by two rays that.
Part 1.  We interpret an angle as a rotation of the ray R 1 onto R 2.  An angle measure of 1 degree is formed by rotating the initial side th of a complete.
Trigonometric Functions of Angles 6. Chapter Overview The trigonometric functions can be defined in two different but equivalent ways: As functions of.
Chapter 7: Trigonometric Functions Section 7.1: Measurement of Angles.
Pre-Calculus Honors Pre-Calculus 4.1: Radian and Degree Measure HW: p (14, 22, 32, 36, 42)
5.1 The Unit Circle.
Copyright © 2014 Pearson Education, Inc.
Sullivan Algebra and Trigonometry: Section 7.1
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Angle Measure In this case, R1 is called the initial side, and R2 is called the terminal side of the angle. If the rotation is counterclockwise, the angle.
Trigonometric Definitions
Copyright © Cengage Learning. All rights reserved.
5.1 The Unit Circle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Degrees and radians.
Precalculus Essentials
5.1 Angles and Their Measure
Copyright © Cengage Learning. All rights reserved.
Section 6.1 Radian and Degree Measure
Copyright © Cengage Learning. All rights reserved.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Presentation transcript:

Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach

Copyright © Cengage Learning. All rights reserved. 6.1 Angle Measure

3 Objectives ► Angle Measure ► Angles in Standard Position ► Length of a Circular Arc ► Area of a Circular Sector ► Circular Motion

4 Angle Measure An angle AOB consists of two rays R 1 and R 2 with a common vertex O (see Figure 1). We often interpret an angle as a rotation of the ray R 1 onto R 2. Figure 1 Positive angle Negative angle

5 Angle Measure In this case, R 1 is called the initial side, and R 2 is called the terminal side of the angle. If the rotation is counterclockwise, the angle is considered positive, and if the rotation is clockwise, the angle is considered negative.

6 Angle Measure The measure of an angle is the amount of rotation about the vertex required to move R 1 onto R 2. Intuitively, this is how much the angle “opens.” One unit of measurement for angles is the degree. An angle of measure 1 degree is formed by rotating the initial side of a complete revolution. In calculus and other branches of mathematics, a more natural method of measuring angles is used—radian measure.

7 Angle Measure hjdf Figure 2

8 Angle Measure The circumference of the circle of radius 1 is 2  and so a complete revolution has measure 2  rad, a straight angle has measure  rad, and a right angle has measure  /2 rad. An angle that is subtended by an arc of length 2 along the unit circle has radian measure 2 (see Figure 3). Figure 3 Radian measure

9 Angle Measure When no unit is given, the angle is assumed to be measured in radians.

10 Example – Converting Between Radians and Degrees (a) Express 60  in radians. (b) Express rad in degrees.

11 Angles in Standard Position

12 Angles in Standard Position An angle is in standard position if it is drawn in the xy-plane with its vertex at the origin and its initial side on the positive x-axis. Figure 5 gives examples of angles in standard position. Figure 5 Angles in standard position (a) (b) (c)(d)

13 Angles in Standard Position Two angles in standard position are coterminal if their sides coincide (they have the same terminal point). In Figure 5 the angles in (a) and (c) are coterminal.

14 Example – Coterminal Angles (a) Find 2 angles that are coterminal with the angle  = 30  in standard position. (b) Find 2 angles that are coterminal with the angle  = in standard position.

15 Length of a Circular Arc

16 Length of a Circular Arc Solving for , we get the important formula

17 Length of a Circular Arc This formula allows us to define radian measure using a circle of any radius r : The radian measure of an angle  is s/r, where s is the length of the circular arc that subtends  in a circle of radius r (see Figure 10). Figure 10 The radian measure of  is the number of “radiuses” that can fit in the arc that subtends  ; hence the term radian.

18 Example – Arc Length and Angle Measure (a) Find the length of an arc of a circle with radius 10 m that subtends a central angle of 30 . (b) A central angle  in a circle of radius 4 m is subtended by an arc of length 6 m. Find the measure of  in radians.

19 Area of a Circular Sector

20 Area of a Circular Sector

21 Example – Area of a Sector Find the area of a sector of a circle with central angle 60  if the radius of the circle is 3 m.

22 Circular Motion

23 Circular Motion Suppose a point moves along a circle as shown in Figure 12. There are two ways to describe the motion of the point: linear speed and angular speed. Linear speed is the rate at which the distance traveled is changing, so linear speed is the distance traveled divided by the time elapsed. Figure 12

24 Circular Motion Angular speed is the rate at which the central angle  is changing, so angular speed is the number of radians this angle changes divided by the time elapsed.

25 Example – Finding Linear and Angular Speed A boy rotates a stone in a 3-ft-long sling at the rate of 15 revolutions every 10 seconds. Find the angular and linear velocities of the stone.

26 Circular Motion

27 Example – Finding Linear Speed from Angular Speed A woman is riding a bicycle whose wheels are 26 inches in diameter. If the wheels rotate at 125 revolutions per minute (rpm), find the speed at which she is traveling, in mi/h.