1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri.

Slides:



Advertisements
Similar presentations
Using Solver to solve a minimization LP + interpretation of output BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12.
Advertisements

Linear Programming Problem
Linear Programming.
Introduction to Sensitivity Analysis Graphical Sensitivity Analysis
Ch 3 Introduction to Linear Programming By Kanchala Sudtachat.
BA 452 Lesson A.2 Solving Linear Programs 1 1ReadingsReadings Chapter 2 An Introduction to Linear Programming.
Operations Control Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management Science: Quantitative Approaches.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 2 Linear Programming Models: Graphical and Computer Methods © 2007 Pearson Education.
Chapter 2: Introduction to Linear Programming
An Introduction to Linear Programming : Graphical and Computer Methods
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize.
Chapter 3 An Introduction to Linear Programming
3 Components for a Spreadsheet Linear Programming Problem There is one cell which can be identified as the Target or Set Cell, the single objective of.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Readings Readings Chapter 2 An Introduction to Linear Programming.
John Loucks Modifications by A. Asef-Vaziri Slides by St. Edward’s
FORMULATION AND GRAPHIC METHOD
Graphical Solutions Plot all constraints including nonnegativity ones
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
Linear Programming Models: Graphical and Computer Methods
Copyright © 2010, All rights reserved eStudy.us Linear Programming Hirschey Alternative Presentation Sweeney Alternative Presentation.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
LINEAR PROGRAMMING SIMPLEX METHOD.
Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize.
Chapter 19 Linear Programming McGraw-Hill/Irwin
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
Linear Programming: Basic Concepts
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 6S Linear Programming.
Linear Programming Topics General optimization model LP model and assumptions Manufacturing example Characteristics of solutions Sensitivity analysis Excel.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Introduction to Linear Programming BSAD 141 Dave Novak.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
LP: Summary thus far Requirements Graphical solutions Excel Sensitivity Analysis.
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
Sensitivity analysis continued… BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
2-1 Modeling with Linear Programming Chapter Optimal Solution for New Objective Function Graphical Solution of Maximization Model (12 of 12) Maximize.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Introduction to Linear Programming Linear Programming Problem Linear Programming Problem Problem Formulation Problem Formulation A Simple Maximization.
1 1 Slide Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Chapter 2 Linear Programming Models: Graphical and Computer Methods
An Introduction to Linear Programming
Decision Support Systems
An Introduction to Linear Programming Pertemuan 4
Chapter 2 An Introduction to Linear Programming
St. Edward’s University
Solver & Optimization Problems
Operations Research Instructor: Xiaoxi Li (李晓蹊) Wuhan University, Fall
Introduction to linear programming (LP): Minimization
Linear Programming Problem
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Presentation transcript:

1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri

2 2 Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Simple Maximization Problem n Computer Solutions n A Simple Minimization Problem n Special Cases

3 3 Linear Programming (LP) Problem n Linear programming involves choosing a course of action when the mathematical model of the problem contains only linear functions. n The maximization or minimization of some quantity is the objective in all linear programming problems. n All LP problems have constraints that limit the degree to which the objective can be pursued. n A feasible solution satisfies all the problem's constraints. n An optimal solution is a feasible solution that results in the largest possible objective function value when maximizing (or smallest when minimizing).

4 4 Linear Programming (LP) Problem n If both the objective function and the constraints are linear, the problem is referred to as a linear programming problem. n Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0). n Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant.

5 5 Problem Formulation n Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement. n Formulating models is an art that can only be mastered with practice and experience. n Every LP problems has some unique features, but most problems also have common features. n General guidelines Understand the problem thoroughly. Understand the problem thoroughly. Identify the decision variables. Identify the decision variables. Describe the objective function. Describe the objective function. Describe each constraint. Describe each constraint.

6 6 Example 1: A Simple Maximization Problem n LP Formulation Max 5 x x 2 s.t. x 1 < 6 2 x x 2 < 19 2 x x 2 < 19 x 1 + x 2 < 8 x 1 + x 2 < 8 x 1 > 0 and x 2 > 0 x 1 > 0 and x 2 > 0 ObjectiveFunction “Regular”Constraints Non-negativity Constraints Constraints

7 7 Computer Solutions n LP problems involving 1000s of variables and 1000s of constraints are now routinely solved with computer packages. n Linear programming solvers are now part of many spreadsheet packages, such as Microsoft Excel. n Leading commercial packages include CPLEX, LINGO, MOSEK, Xpress-MP, and Premium Solver for Excel. n In this chapter we will discuss the following output: objective function value objective function value values of the decision variables values of the decision variables reduced costs reduced costs slack and surplus slack and surplus

8 8 Example 1: Spreadsheet Solution n Partial Spreadsheet Showing Problem Data

9 9 Example 1: Spreadsheet Solution n Partial Spreadsheet Showing Solution

10 Example 1: Spreadsheet Solution n Interpretation of Computer Output We see from the previous slide that: Objective Function Value = 46 Objective Function Value = 46 Decision Variable #1 ( x 1 ) = 5 Decision Variable #1 ( x 1 ) = 5 Decision Variable #2 ( x 2 ) = 3 Decision Variable #2 ( x 2 ) = 3 Slack in Constraint #1 = 6 – 5 = 1 Slack in Constraint #1 = 6 – 5 = 1 Slack in Constraint #2 = 19 – 19 = 0 Slack in Constraint #2 = 19 – 19 = 0 Slack in Constraint #3 = 8 – 8 = 0 Slack in Constraint #3 = 8 – 8 = 0

11 Reduced Cost n The reduced cost for a decision variable whose value is 0 in the optimal solution is: the amount the variable's objective function coefficient would have to improve (increase for maximization problems, decrease for minimization problems) before this variable could assume a positive value. n The reduced cost for a decision variable whose value is > 0 in the optimal solution is 0.

12 Example 1: Spreadsheet Solution n Reduced Costs

13 Example 2: A Simple Minimization Problem n LP Formulation Min 5 x x 2 s.t. 2 x x 2 > 10 4 x 1  x 2 > 12 4 x 1  x 2 > 12 x 1 + x 2 > 4 x 1 + x 2 > 4 x 1, x 2 > 0 x 1, x 2 > 0

14 Feasible Region n The feasible region for an LP problem can be nonexistent, a single point, a line, a polygon, or an unbounded area. n Any linear program falls in one of four categories: is infeasible is infeasible has a unique optimal solution has a unique optimal solution has alternative optimal solutions has alternative optimal solutions has an objective function that can be increased without bound has an objective function that can be increased without bound n A feasible region may be unbounded and yet there may be optimal solutions. This is common in minimization problems and is possible in maximization problems.

15 Special Cases: Alternative Optimal Solutions n Consider the following LP problem. Max 4 x x 2 s.t. x 1 < 6 2 x x 2 < 18 2 x x 2 < 18 x 1 + x 2 < 7 x 1 + x 2 < 7 x 1 > 0 and x 2 > 0 x 1 > 0 and x 2 > 0

16 Special Cases: Infeasibility No solution to the LP problem satisfies all the constraints, including the non-negativity conditions. No solution to the LP problem satisfies all the constraints, including the non-negativity conditions. Graphically, this means a feasible region does not exist. Graphically, this means a feasible region does not exist. Causes include: Causes include: A formulation error has been made.A formulation error has been made. Management’s expectations are too high.Management’s expectations are too high. Too many restrictions have been placed on the problem (i.e. the problem is over-constrained).Too many restrictions have been placed on the problem (i.e. the problem is over-constrained).

17 Example: Infeasible Problem n Consider the following LP problem. Max 2 x x 2 s.t. 4 x x 2 < 12 2 x 1 + x 2 > 8 2 x 1 + x 2 > 8 x 1, x 2 > 0 x 1, x 2 > 0

18 Special Cases: Unbounded Feasible Region The solution to a maximization LP problem is unbounded if the value of the solution may be made indefinitely large without violating any of the constraints. The solution to a maximization LP problem is unbounded if the value of the solution may be made indefinitely large without violating any of the constraints. For real problems, this is the result of improper formulation. (Quite likely, a constraint has been inadvertently omitted.) For real problems, this is the result of improper formulation. (Quite likely, a constraint has been inadvertently omitted.)

19 Example: Unbounded Solution n Consider the following LP problem. Max 4 x x 2 s.t. x 1 + x 2 > 5 3 x 1 + x 2 > 8 3 x 1 + x 2 > 8 x 1, x 2 > 0 x 1, x 2 > 0

20 End of Chapter 2