MECHANISMS OF ACTION OF ANTIBIOTICS
BACTERIOSTATIC AGENTS Sulfonamides Drugs inhibiting protein synthesis except aminoglycosides (macrolides, chloramphenicol, tetracyclines etc).
BACTERICIDAL AGENTS Beta lactams (penicillins, cephalosporins, imipenem) Trimethoprim/sulfamethoxazole Vancomycin Fluoroquinolones Aminoglycosides
MECHANISMS OF ACTION Inhibitors of cell wall synthesis Drugs altering cell membranes Inhibitors of protein synthesis Antimetabolites Inhibitors of nucleic acid synthesis.
DRUGS INHIBITING CELL WALL SYNTHESIS Penicillins Cephalosporins Imipenem Vancomycin Fosfomycin β-lactams
Plus penicillin Spheroplast Emerging Spheroplast Dividing Bacteria Division Growth site Growth
Mur NAc X Glycopeptide Polymer X Mur NAc Glycopeptide Polymer X Glycopeptide Polymer D-Alanine Transpeptidase
Penicillin Binding Proteins Transpeptidases Carboxypeptidases Endopeptidases Penicillin
AUTOLYSINS
All Beta lactam antibiotics act by the same mechanism
PENICILLINS ACTIVE VS GRAM - BACTERIA
S C C C C C NCOOH O CH 3 NC O R Penicillinase S C C C CNCOOH CH 3 N C O R OH O Penicilloic Acid (β-Lactamase)
COMBINATIONS WITH BETA LACTAMASE INHIBITORS Penicillin plus a beta lactamase inhibitor.
CEPHALOSPORINS AND IMIPENEM Same mechanism of action as penicillins but bind to different binding proteins.
FOSFOMYCIN Inhibits peptidoglycan synthesis at an earlier stage than where the beta lactams act.
Fosfomycin UDP-GNAc-pyruvate enol ether UDP-NAc-muramyl- L -Ala- D -Glu- L -Lys- D -Ala- D -Ala UTP + N-acetylglucosamine-1-P UDP-GNAc PP Phosphoenolpyruvate (Biel pp 24-26)
VANCOMYCIN
E nz y m e NAG-NAM D-ALA L-GLU LYS D-ALA Transpeptidase PENICILLINS X
NAG-NAM D-ALA L-GLU LYS D-ALA E nz y m e VAN Transglycosylase
RESISTANCE TO BETA LACTAMS Penicillinase Beta lactamases
RESISTANCE Increased production of beta- lactamase (penicillinase) enzymes.
S C C C C C NCOOH O CH 3 NC O R Penicillinase S C C C CNCOOH CH 3 N C O R OH O Penicilloic Acid
METHICILLIN RESISTANCE Altered PBP’s.
RESISTANCE TO OTHER BETA LACTAM ANTIBIOTICS Most prevalent mechanism is hydrolysis by beta lactamases. Cephalosporins have variable susceptibility to βlactamases. Some even induce formation of the enzymes.
RESISTANCE TO VANCOMYCIN
ANTIBIOTICS AFFECTING CELL MEMBRANES Polymyxins Daptomycin
POLYMYXINS Surface active amphipathic agents. Interact strongly with phospholipids and disrupt the structure of cell membranes.
DAPTOMYCIN Depolarizes the cell membrane
ANTIBIOTICS INHIBITING PROTEIN SYNTHESIS Macrolides Clindamycin Linezolid Streptogramins Chloramphenicol Tetracyclines Aminoglycosides
50S 30S Procaryotic Ribosome 70S-- M.W.2,500,000 60S 40S Eucaryotic Ribosome 80S--M.W. 4,200,000
Antibiotics binding to the 50S ribosomal subunit and inhibiting protein synthesis Erythromycin and other macrolides Chloramphenicol Linezolid Streptogramins
Antibiotics binding to the 30S ribosomal subunit and inhibiting protein synthesis Aminoglycosides Tetracyclines
CLE an S AT
Macrolides (Erythromycin, Azithromycin and Clarithromycin)
aa A 50S 30S mRNA template Transferase site P Nascent polypeptide chain MACROLIDES TRANSLOCATION
CHLORAMPHENICOL
aa A 50S 30S mRNA template Transferase site P Nascent polypeptide chain Chloramphenicol Mechanism of action of Chloramphenicol
INITIATION
STREPTOGRAMINS Quinupristin/Dalfopristin (30:70)
aa A 50S 30S mRNA template Transferase site P Nascent polypeptide chain QUINUPRISTIN (MACROLIDE) DALFOPRISTIN
MECHANISM OF ACTION Act synergistically to inhibit bacterial protein synthesis. They bind to separate sites on the 50 S ribosomal subunit and form a ternary complex with the ribosome.
MECHANISM OF ACTION Quinupristin binds at the same site as the macrolides and has a similar effect. Dalfopristin directly blocks peptide bond formation by inhibiting peptidyl transferase. Dalfopristin results in a conformational change in the 50S ribosome subunit.
INITIATION
AMINOGLYCOSIDES Bind irreversibly to the 30S subunit. Exact mechanism of cell death is unknown. Postantibiotic effect.
A 50S 30S mRNA template Transferase site P Nascent polypeptide chain Tetracycline aa
INHIBITION OF MITOCHONDRIAL PROTEIN SYNTHESIS Mitochondrial ribosome resembles bacterial ribosome. May account for some toxic effects (e.g. chloramphenicol, linezolid).
RESISTANCE Alterations in ribosomal proteins (e.g. macrolides). Decreased permeability to the antibiotic.
Tetracycline ATP TETRACYCLINE RESISTANCE
ANTIBIOTICS ACTING AS ANTIMETABOLITES Sulfonamides Trimethoprim plus sulfamethoxazole
2 HNCOOH DIHYDROPTERIDINE PYROPHOSPHATE DERIVATIVE DIHYDROPTEROIC ACID DIHYDROFOLIC ACID FOLIC ACID BIOSYNTHESIS Glutamic Acid 2 ATP 2 HN SO 2 NH 2 Dihydropteroate Synthetase
TRIMETHOPRIM- SULFAMETHOXAZOLE 2 HNCH 2 OCH 3 80 mg TRIMETHOPRIM O 2 HN SO 2 NH NCH mg SULFAMETHOXAZOLE
PABA DIHYDROPTEROIC ACID DIHYROFOLIC ACID TETRAHYDROFOLIC ACID + Pteridine SULFONAMIDE TRIMETHOPRIM Dihydrofolate Reductase Dihydrofolate Synthetase Dihydropteroate Synthetase
Advantages of sulfonamide- trimethoprim combination
Results from multiple mechanisms. Altered dihydropteroate synthetase. Cross-resistance among all sulfonamides. SULFONAMIDE- RESISTANCE
ANTIBIOTICS AFFECTING NUCLEIC ACID SYNTHESIS. Fluoroquinolones Metronidazole Rifampin
FLUOROQUINOLONES
Gyrase (Topoisomerase I)-older quinolones Topoisomerase IV-3 rd and 4 th gen quinolones.
FQ RESISTANCE Changes in gyrase and topoisomerase Increased efflux
Inactive End Products Metronidazole Metronidazole Short lived intermediates Inactive end products products DNA RNA Protein Other targets Mechanism of action of metronidazole on an anaerobic organism Ferredoxin reduced
RIFAMPIN