EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

EE359 – Lecture 10 Outline Announcements: Project proposals due this Friday at 5pm (post, link) Midterm will be Nov. 7, 6-8pm, Room TBD, no HW due.
EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
EE359 – Lecture 10 Outline Announcements: Project proposals due today at 5pm (post, link) Midterm will be Nov. 4, 6-8pm, Room TBD, no HW due that.
Diversity techniques for flat fading channels BER vs. SNR in a flat fading channel Different kinds of diversity techniques Selection diversity performance.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
Noise Cancelation for MIMO System Prepared by: Heba Hamad Rawia Zaid Rua Zaid Supervisor: Dr.Yousef Dama.
IERG 4100 Wireless Communications
EE360: Lecture 9 Outline Multiuser OFDM Announcements: Project abstract due next Friday Multiuser OFDM Adaptive Techniques “OFDM with adaptive subcarrier,
Wireless Communication Channels: Small-Scale Fading
Muhammad Imadur Rahman1, Klaus Witrisal2,
Diversity Reception To reduce fading effects, diversity reception techniques are used. Diversity means the provision of two or more uncorrelated (independent)
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Equal.
12- OFDM with Multiple Antennas. Multiple Antenna Systems (MIMO) TX RX Transmit Antennas Receive Antennas Different paths Two cases: 1.Array Gain: if.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Midterm review Introduction to adaptive.
1 Techniques to control noise and fading l Noise and fading are the primary sources of distortion in communication channels l Techniques to reduce noise.
مخابرات سیّار (626-40) چند مسیری
Lecture 7,8: Diversity Aliazam Abbasfar. Outline Diversity types Diversity combining.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
Course Summary Overview/history of wireless communications (Ch. 1)
EE359 – Lecture 13 Outline Adaptive MQAM: optimal power and rate Finite Constellation Sets Practical Constraints Update rate Estimation error Estimation.
Space Time Codes. 2 Attenuation in Wireless Channels Path loss: Signals attenuate due to distance Shadowing loss : absorption of radio waves by scattering.
EE359 – Lecture 12 Outline Combining Techniques
3: Diversity Fundamentals of Wireless Communication, Tse&Viswanath 1 3. Diversity.
A Simple Transmit Diversity Technique for Wireless Communications -M
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
EE359 – Lecture 12 Outline Announcements Midterm announcements HW 5 due Friday, 11/4, at noon (no late HWs) No HW next week (work on projects) MGF Approach.
EE359 – Lecture 19 Outline Announcements Final Exam Announcements HW 8 (last HW) due Thursday 5pm (no late HWs) 10 bonus points for course evaluations.
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
Channel Capacity.
Multiple Antennas.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Introduction to adaptive modulation Variable-rate.
Diversity.
EE359 – Lecture 19 Outline Announcements Final Exam Announcements HW 8 (last HW) due Sunday 5pm (no late HWs) Bonus lecture today 6-8pm (pizza/cake); Hewlett.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 14 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
Advanced Wireless Networks
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Midterm Review Midterm only covers material from lectures and HWs
Diversity Lecture 7.
Space Time Coding and Channel Estimation
EE359 – Lecture 12 Outline Announcements Transmit Diversity
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 14 Outline Announcements:
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 18 Outline Announcements Spread Spectrum
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
EE359 – Lecture 11 Outline Announcements Introduction to Diversity
EE359 – Lecture 19 Outline Multiple Access
Presentation transcript:

EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach to MRC Performance Transmit Diversity Midterm Review (if time permits)

Midterm Announcements Midterm Thur Nov. 7, 6-8pm, Thornton 110 Open book/notes (bring textbook/calculators) Covers Chapters 1-7 Review during Tues lecture and Tues disc. Extra OHs Mine: Tuesday 5-6pm and Wednesday 6-7pm Mainak’s to be announced. No HW next week Midterms from past 3 MTs posted this week 10 bonus points for “taking” a practice exam Solns for all exams given when you turn in practice exam

Review of Last Lecture Performance in ISI and Doppler Introduction to Diversity Send same bits over independent fading paths l Time, space, frequency, or polarization diversity Combine paths to mitigate fading effects Performance metrics: Array and Diversity gain Structure of a Diversity Combiner t

Combining Techniques Selection Combining Fading path with highest gain used Maximal Ratio Combining All paths cophased and summed with optimal weighting to maximize combiner output SNR Equal Gain Combining All paths cophased and summed with equal weighting Array/Diversity gain Array gain is from noise averaging (AWGN and fading) Diversity gain is change in BER slope (fading)

Selection Combining Analysis and Performance Selection Combining (SC) Combiner SNR is the maximum of the branch SNRs. CDF easy to obtain, pdf found by differentiating. Diminishing returns with number of antennas. Can get up to about 20 dB of gain. Outage Probability

MRC and its Performance With MRC,   =  i for branch SNRs  i Optimal technique to maximize output SNR Yields dB performance gains Distribution of   hard to obtain Standard average BER calculation Hard to obtain in closed form Integral often diverges MGF Approach

EGC and Transmit Diversity EGQ simpler than MRC Paths co-phased, combined with equal gain Harder to analyze Performance about 1 dB worse than MRC Not covered in lecture or on exam Transmit diversity With channel knowledge, similar to receiver diversity, same array/diversity gain Without channel knowledge, can obtain diversity gain through Alamouti scheme: works over 2 consecutive symbols

Main Points MRC optimally combines fading paths to maximize combiner SNR MRC vs SC trade off complexity for performance. MRC yields dB gain, SC around 20 dB. Analysis of MRC simplified using MGF approach Transmit diversity can obtain diversity gain even without channel information at transmitter.

Midterm Review Overview of Wireless Systems Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Diversity Techniques Main Points