Major Tasks in Data Preprocessing(Ref Chap 3) By Prof. Muhammad Amir Alam.

Slides:



Advertisements
Similar presentations
UNIT – 1 Data Preprocessing
Advertisements

UNIT-2 Data Preprocessing LectureTopic ********************************************** Lecture-13Why preprocess the data? Lecture-14Data cleaning Lecture-15Data.
Noise & Data Reduction. Paired Sample t Test Data Transformation - Overview From Covariance Matrix to PCA and Dimension Reduction Fourier Analysis - Spectrum.
DATA PREPROCESSING Why preprocess the data?
1 Copyright by Jiawei Han, modified by Charles Ling for cs411a/538a Data Mining and Data Warehousing v Introduction v Data warehousing and OLAP for data.
Ch2 Data Preprocessing part3 Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
Data Mining Feature Selection. Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same.

Data Mining: Concepts and Techniques
Data Preprocessing.
Data Mining: Concepts and Techniques (3rd ed.) — Chapter 3 —
6/10/2015Data Mining: Concepts and Techniques1 Chapter 2: Data Preprocessing Why preprocess the data? Descriptive data summarization Data cleaning Data.
Chapter 3 Pre-Mining. Content Introduction Proposed New Framework for a Conceptual Data Warehouse Selecting Missing Value Point Estimation Jackknife estimate.
Pre-processing for Data Mining CSE5610 Intelligent Software Systems Semester 1.
Chapter 4 Data Preprocessing
Data Preprocessing.
Peter Brezany and Christian Kloner Institut für Scientific Computing
Chapter 1 Data Preprocessing
CS2032 DATA WAREHOUSING AND DATA MINING
Data Mining : Introduction Chapter 1. 2 Index 1. What is Data Mining? 2. Data Mining Functionalities 1. Characterization and Discrimination 2. MIning.
Ch2 Data Preprocessing part2 Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
D ATA P REPROCESSING 1. C HAPTER 3: D ATA P REPROCESSING Why preprocess the data? Data cleaning Data integration and transformation Data reduction Discretization.
The Knowledge Discovery Process; Data Preparation & Preprocessing
Outline Introduction Descriptive Data Summarization Data Cleaning Missing value Noise data Data Integration Redundancy Data Transformation.
Descriptive Exploratory Data Analysis III Jagdish S. Gangolly State University of New York at Albany.
Data Reduction. 1.Overview 2.The Curse of Dimensionality 3.Data Sampling 4.Binning and Reduction of Cardinality.
Data Reduction Strategies Why data reduction? A database/data warehouse may store terabytes of data Complex data analysis/mining may take a very long time.
Preprocessing for Data Mining Vikram Pudi IIIT Hyderabad.
Data Preprocessing Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2010.
2015年11月6日星期五 2015年11月6日星期五 2015年11月6日星期五 Data Mining: Concepts and Techniques1 Data Preprocessing — Chapter 2 —
Data Preprocessing Dr. Bernard Chen Ph.D. University of Central Arkansas.
November 24, Data Mining: Concepts and Techniques.
Data Preprocessing Compiled By: Umair Yaqub Lecturer Govt. Murray College Sialkot.

Data Mining Spring 2007 Noisy data Data Discretization using Entropy based and ChiMerge.
Data Cleaning Data Cleaning Importance “Data cleaning is one of the three biggest problems in data warehousing”—Ralph Kimball “Data.
January 17, 2016Data Mining: Concepts and Techniques 1 What Is Data Mining? Data mining (knowledge discovery from data) Extraction of interesting ( non-trivial,
Data Mining: Concepts and Techniques — Chapter 2 —
Managing Data for DSS II. Managing Data for DS Data Warehouse Common characteristics : –Database designed to meet analytical tasks comprising of data.
February 18, 2016Data Mining: Babu Ram Dawadi1 Chapter 3: Data Preprocessing Preprocess Steps Data cleaning Data integration and transformation Data reduction.
Data Preprocessing Compiled By: Umair Yaqub Lecturer Govt. Murray College Sialkot.
Data Preprocessing: Data Reduction Techniques Compiled By: Umair Yaqub Lecturer Govt. Murray College Sialkot.
Waqas Haider Bangyal. Classification Vs Clustering In general, in classification you have a set of predefined classes and want to know which class a new.
Data Mining What is to be done before we get to Data Mining?
Bzupages.comData Mining: Concepts and Techniques1 Data Mining: Concepts and Techniques — Slides for Textbook — — Chapter 3 — ©Jiawei Han and Micheline.
1 Web Mining Faculty of Information Technology Department of Software Engineering and Information Systems PART 4 – Data pre-processing Dr. Rakan Razouk.
Data Mining: Data Prepossessing What is to be done before we get to Data Mining?
Pattern Recognition Lecture 20: Data Mining 2 Dr. Richard Spillman Pacific Lutheran University.
Course Outline 1. Pengantar Data Mining 2. Proses Data Mining
Data Transformation: Normalization
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques
Data Mining: Data Preparation
Noisy Data Noise: random error or variance in a measured variable.
UNIT-2 Data Preprocessing
Classification & Prediction
Data Preprocessing Copyright, 1996 © Dale Carnegie & Associates, Inc.
Data Preprocessing Modified from
Data Preprocessing Copyright, 1996 © Dale Carnegie & Associates, Inc.
Chapter 1 Data Preprocessing
©Jiawei Han and Micheline Kamber
Data Transformations targeted at minimizing experimental variance
Data Mining Data Preprocessing
Data Preprocessing Copyright, 1996 © Dale Carnegie & Associates, Inc.
By Sandeep Patil, Department of Computer Engineering, I²IT
Data Preprocessing Copyright, 1996 © Dale Carnegie & Associates, Inc.
Data Preprocessing Copyright, 1996 © Dale Carnegie & Associates, Inc.
Tel Hope Foundation’s International Institute of Information Technology, (I²IT). Tel
Presentation transcript:

Major Tasks in Data Preprocessing(Ref Chap 3) By Prof. Muhammad Amir Alam

There are four major steps in data processing Data cleaning Data integration Data reduction Data transformation.

It works to “clean” the data by filling in missing values, smoothing noisy data, identifying or removing outliers, and resolving inconsistencies. If users believe the data are dirty, they are unlikely to trust the results of any data mining that has been applied. Furthermore, dirty data can cause confusion for the mining procedure, resulting in unreliable output. Although most mining routines have some procedures for dealing with incomplete or noisy data, they are not always robust. Instead, they may concentrate on avoiding over fitting the data to the function being modeled. Therefore, a useful preprocessing step is to run your data through some data cleaning routines.

Suppose that you would like to include data from multiple sources in your analysis. This would involve integrating multiple databases or files For example, the attribute for customer identification may be referred to as customer id in one data store and cust id in another. Naming inconsistencies may also occur for attribute values. For example, the same first name could be registered as “Bill” in one database, “William” in another, and “B.” in a third. Furthermore, you suspect that some attributes may be inferred from others (e.g., annual revenue). Having a large amount of redundant data may slow down or confuse the knowledge discovery process. Clearly, in addition to data cleaning, steps must be taken to help avoid redundancies during data integration. Typically, data cleaning and data integration are performed as a preprocessing step when preparing data for a data warehouse. Additional data cleaning can be performed to detect and remove redundancies that may have resulted from data integration.

Ignore the tuple Fill in the missing value manually Use a global constant to fill in the missing value Use a measure of central tendency for the attribute (e.g., the mean or average) to fill in the missing value Use the most probable value to fill in the missing value

Noise is a random error or variance in a measured variable. We can “smooth” out the data to remove the noise? Let’s look at the following data smoothing techniques. Binning: Binning methods smooth a sorted data value by consulting its “neighborhood,” that is, the values around it. The sorted values are distributed into a number of “buckets,” or bins. Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34 Partition into (equal-frequency) bins: Bin 1: 4, 8, 15 Bin 2: 21, 21, 24 Bin 3: 25, 28, 34 Smoothing by bin means: Bin 1: 9, 9, 9 Bin 2: 22, 22, 22 Bin 3: 29, 29, 29 Smoothing by bin boundaries: Bin 1: 4, 4, 15 Bin 2: 21, 21, 24 Bin 3: 25, 25, 34

Regression: Data smoothing can also be done by regression, a technique that conforms data values to a function. Linear regression involves finding the “best” line to fit two attributes (or variables) so that one attribute can be used to predict the other. Outlier analysis: Outliers may be detected by clustering, for example, where similar values are organized into groups, or “clusters.” Intuitively, values that fall outside of the set of clusters may be considered outliers

Data mining often requires data integration—the merging of data from multiple data stores. Careful integration can help reduce and avoid redundancies and inconsistencies in the resulting data set. This can help improve the accuracy and speed of the subsequent data mining process.

obtains a reduced representation of the data set that is much smaller in volume, yet produces the same (or almost the same) analytical results. Data reduction strategies include dimensionality reduction and numerosity reduction. In dimensionality reduction, data encoding schemes are applied so as to obtain a reduced or “compressed” representation of the original data. In numerosity reduction, the data are replaced by alternative, smaller representations

In this preprocessing step, the data are transformed or consolidated so that the resulting mining process may be more efficient, and the patterns found may be easier to understand. In data transformation, the data are transformed or consolidated into forms appropriate for mining. Strategies for data transformation include the following: 1. Smoothing, which works to remove noise from the data. Techniques include binning,regression, and clustering. 2. Attribute construction (or feature construction), where new attributes are constructed and added from the given set of attributes to help the mining process.

3. Aggregation, where summary or aggregation operations are applied to the data. For example, the daily sales data may be aggregated so as to compute monthly and annual total amounts. This step is typically used in constructing a data cube for data analysis at multiple abstraction levels. 4. Normalization, where the attribute data are scaled so as to fall within a smaller range, such as 1.0 to 1.0, or 0.0 to Discretization, where the raw values of a numeric attribute (e.g., age) are replaced by interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., youth, adult, senior). The labels, in turn, can be recursively organized into higher-level concepts, resulting in a concept hierarchy for the numeric attribute. More than one concept hierarchy can be defined for the same attribute to accommodate the needs of various users. 6. Concept hierarchy generation for nominal data, where attributes such as street can be generalized to higher-level concepts, like city or country. Many hierarchies for nominal attributes are implicit within the database schema and can be automatically defined at the schema definition level.