PLANCK L’IMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI.

Slides:



Advertisements
Similar presentations
The second LDB flight of BOOMERanG was devoted to CMB polarization measurements Was motivated by the desire to measure polarization : –at 145 GHz (higher.
Advertisements

Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
CMB and cluster lensing Antony Lewis Institute of Astronomy, Cambridge Lewis & Challinor, Phys. Rept : astro-ph/
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Neutrinos and Cosmology Alessandro Melchiorri Universita di Roma, La Sapienza NOW 2010, Conca-Specchiulla September 7th 2010.
Science with Future CMB Observations Lloyd Knox UC Davis.
Eloisa Menegoni ICRA and INFN, University of Rome “La Sapienza” Cosmological constraints on variations of fundamental constants Miami2010, Fort Lauderdale,
Planck 2013 results, implications for cosmology
Systematic effects in cosmic microwave background polarization and power spectrum estimation SKA 2010 Postgraduate Bursary Conference, Stellenbosch Institute.
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
CMB lensing and cosmic acceleration Viviana Acquaviva SISSA, Trieste.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
1 Studying clusters and cosmology with Chandra Licia Verde Princeton University Some thoughts…
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
CMB as a physics laboratory
Constraints on the Primordial Magnetic Field and Neutrino Mass from the CMB Polarization and Power Spectra G. J. Mathews - University of Notre Dame D..
Added science from improved measurements of T and E modes S. A. Bonometto, E. Branchini, C. Burigana, L. P. L. Colombo, J. M. Diego, R. Fabbri, F. K. Hansen,
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, Karčiauskas, JHEP 07, 119 (2008) Dimopoulos,
Constraints on the Dark Side of the Universe Alessandro Melchiorri.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
Based on Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016 Phys.Rev.D84:043515,2011,arXiv: &JCAP01(2012)016.
Early times CMB.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
The anisotropic inflation and its imprints on the CMB Kyoto University Masaaki WATANABE Ref: MW, Sugumi Kanno, and Jiro Soda [1] 2009, arXiv:
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Extranatural Inflation Nuno M. C. Santos CFTP - IST Centro de Física Teórica de Partículas Instituto Superior Técnico - Universidade Técnica de Lisboa.
Gaitskell CMB Polarization DASI Recent Results Brown Astro Journal Club Rick Gaitskell (Brown University)
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
(some) Future CMB Constraints on fundamental physics Alessandro Melchiorri Universita’ di Roma, “La Sapienza” MIAMI2010, Fort Lauderdale December 15th.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Hemispherical Power Asymmetry 郭宗宽 昆明 anomalies in CMB map the quadrupole-octopole alignment power deficit at low- l hemispherical asymmetry.
Chao-Lin Kuo Stanford Physics/SLAC
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Primordial fluctuations 20  Isotropic 3K background. The most perfect blackbody we know Dipole (3.4 mK). Our motion relative to CMB.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
The Cosmic Microwave Background
Quantum Noises and the Large Scale Structure Wo-Lung Lee Physics Department, National Taiwan Normal University Physics Department, National Taiwan Normal.
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
CMB, lensing, and non-Gaussianities
+ Quintessence and Gravitational Waves Peng Zhou, Daniel Chung UW-Madison Physics Dept.
Cheng Zhao Supervisor: Charling Tao
Precision cosmology, status and perspectives Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 FA-51 Meeting Frascati, June 22nd 2010.
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Harrison B. Prosper Florida State University YSP
Observational Constraints on the Running Vacuum Model
Stochastic Background
12th Marcel Grossman Meeting,
Inflation with a Gauss-Bonnet coupling
Physics Seminar Measurement of the Cosmic Microwave Background anisotropies and polarization with Planck Assoc. Prof. Guillaume Patanchon Astroparticle.
Quantum Spacetime and Cosmic Inflation
Shintaro Nakamura (Tokyo University of Science)
Dark energy from primordial inflationary quantum fluctuations.
A Measurement of CMB Polarization with QUaD
Precision cosmology, status and perspectives
(some) Future CMB Constraints on fundamental physics
CMB Anisotropy 이준호 류주영 박시헌.
“B-mode from space” workshop,
LFI systematics and impact on science
Presentation transcript:

PLANCK L’IMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI

PLANCK@ROMA1 PLANCK@ROMA2 (Analisi Dati e Implicazioni Cosmologiche) Paolo de Bernardis (Roma1) Erminia Calabrese (Roma1) (PhD) Silvia Masi (Roma1) Alessandro Melchiorri (Roma1) Luca Pagano (Roma1) (PhD) Francesco Piacentini Francesco De Bernardis (PhD) Silvia Galli (PhD) Giulia Gubitosi (PhD) Matteo Martinelli (PhD) Stefania Pandolfi (PhD) Marcella Veneziani (ass. ric). Laureandi Magistrale: Maria Archidiacono Paolo Fermani Elena Giusarma Andrea Maselli Eloisa Menegoni Marco Ruzza …in collaborazione con PLANCK@ROMA2 Grazia De Troia Marina Migliaccio Paolo Natoli Nicola Vittorio Giancarlo de Gasperis ….e altro

Current status of CMB observations

We can measure cosmological parameters with CMB ! Wtot , Wb , Wc, L, t, h, ns, … Temperature Angular spectrum varies with

How to get a bound on a cosmological parameter Fiducial cosmological model: (Ωbh2 , Ωmh2 , h , ns , τ, Σmν ) DATA PARAMETER ESTIMATES

Dunkley et al., 2008

Blu: Dati attuali Rosso: Planck

F. De Bernardis, E. Calabrese, P. de Bernardis, S. Masi, AM 2009

Next experiment for measuring neutrino mass: KATRIN Current limits from laboratory:

Constraints on Newton’s constant Likelihood G/G0 S. Galli, A. Melchiorri, G. Smoot, O. Zahn, arxiv:0905.1808

CMB Temperature Lensing unlensed lensed When the luminous source is the CMB, the lensing effect essentially re-maps the temperature field according to :

Analysis Method We phenomenologically uncoupled weak lensing from primary anisotropies by introducing a new parameter AL that scales the lensing potential such as : AL=0 corresponds to a theory ignoring lensing AL=1 corresponds to the standard weak lensing scenario. AL can also be seen like a fudge parameter controlling the amount of smoothing of the peaks. In fact in this figure we can see that the curves with increasingly smoothed peak structures correspond to analysis with increasingly values of AL (0, 1, 3, 6, 9).

Letting the lensing parameter vary, the obtained constraints are: Future constraints Planck HFI 143 GHz Channel: fsky =1 θ=7’ NoiseVar=3,4·10-4 μK2 fiducial model with ACBAR+WMAP3 best fit parameters Letting the lensing parameter vary, the obtained constraints are: E. Calabrese, A. Slosar, A. Melchiorri, G. Smoot, O. Zahn, PRD, 2008

Calabrese, Martinelli, AM, Pagano, 2009

CMB POLARIZATION

Fluctuation and GW generator Fluctuation amplifier But GW dissipator… Hot Dense Smooth Cool Rarefied Clumpy

On this map we see 100000 horizons at z=1000….

SCALAR + TENSOR = We measure the sum of the two spectra. If GW are present this lowers the amplitude of the peak. Degeneracy with other Parameters.

CMB Polarization Polarization is described by Stokes-Q and -U These are coordinate dependent The two dimensional field is described by a gradient of a scalar (E) or curl of a pseudo-scale (B). Grad (or E) modes Curl (or B) modes (density fluctuations have no handness, so no contribution to B-modes). B-Modes=Gravity Waves !!

Several inflationary models predict a sizable GW background (r>0.01) if n<1. Pagano, Cooray, Melchiorri And Kamionkowsky, JCAP 08.