PLANCK L’IMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI
PLANCK@ROMA1 PLANCK@ROMA2 (Analisi Dati e Implicazioni Cosmologiche) Paolo de Bernardis (Roma1) Erminia Calabrese (Roma1) (PhD) Silvia Masi (Roma1) Alessandro Melchiorri (Roma1) Luca Pagano (Roma1) (PhD) Francesco Piacentini Francesco De Bernardis (PhD) Silvia Galli (PhD) Giulia Gubitosi (PhD) Matteo Martinelli (PhD) Stefania Pandolfi (PhD) Marcella Veneziani (ass. ric). Laureandi Magistrale: Maria Archidiacono Paolo Fermani Elena Giusarma Andrea Maselli Eloisa Menegoni Marco Ruzza …in collaborazione con PLANCK@ROMA2 Grazia De Troia Marina Migliaccio Paolo Natoli Nicola Vittorio Giancarlo de Gasperis ….e altro
Current status of CMB observations
We can measure cosmological parameters with CMB ! Wtot , Wb , Wc, L, t, h, ns, … Temperature Angular spectrum varies with
How to get a bound on a cosmological parameter Fiducial cosmological model: (Ωbh2 , Ωmh2 , h , ns , τ, Σmν ) DATA PARAMETER ESTIMATES
Dunkley et al., 2008
Blu: Dati attuali Rosso: Planck
F. De Bernardis, E. Calabrese, P. de Bernardis, S. Masi, AM 2009
Next experiment for measuring neutrino mass: KATRIN Current limits from laboratory:
Constraints on Newton’s constant Likelihood G/G0 S. Galli, A. Melchiorri, G. Smoot, O. Zahn, arxiv:0905.1808
CMB Temperature Lensing unlensed lensed When the luminous source is the CMB, the lensing effect essentially re-maps the temperature field according to :
Analysis Method We phenomenologically uncoupled weak lensing from primary anisotropies by introducing a new parameter AL that scales the lensing potential such as : AL=0 corresponds to a theory ignoring lensing AL=1 corresponds to the standard weak lensing scenario. AL can also be seen like a fudge parameter controlling the amount of smoothing of the peaks. In fact in this figure we can see that the curves with increasingly smoothed peak structures correspond to analysis with increasingly values of AL (0, 1, 3, 6, 9).
Letting the lensing parameter vary, the obtained constraints are: Future constraints Planck HFI 143 GHz Channel: fsky =1 θ=7’ NoiseVar=3,4·10-4 μK2 fiducial model with ACBAR+WMAP3 best fit parameters Letting the lensing parameter vary, the obtained constraints are: E. Calabrese, A. Slosar, A. Melchiorri, G. Smoot, O. Zahn, PRD, 2008
Calabrese, Martinelli, AM, Pagano, 2009
CMB POLARIZATION
Fluctuation and GW generator Fluctuation amplifier But GW dissipator… Hot Dense Smooth Cool Rarefied Clumpy
On this map we see 100000 horizons at z=1000….
SCALAR + TENSOR = We measure the sum of the two spectra. If GW are present this lowers the amplitude of the peak. Degeneracy with other Parameters.
CMB Polarization Polarization is described by Stokes-Q and -U These are coordinate dependent The two dimensional field is described by a gradient of a scalar (E) or curl of a pseudo-scale (B). Grad (or E) modes Curl (or B) modes (density fluctuations have no handness, so no contribution to B-modes). B-Modes=Gravity Waves !!
Several inflationary models predict a sizable GW background (r>0.01) if n<1. Pagano, Cooray, Melchiorri And Kamionkowsky, JCAP 08.