EQ: How can we use the Pythagoren Theorem and Triangle Inequalities to identify a triangle?

Slides:



Advertisements
Similar presentations
The Pythagorean Theorem and its Converse
Advertisements

The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry Pythagorean.
The Pythagorean Theorem
8-1 The Pythagorean Theorem and Its Converse. Parts of a Right Triangle In a right triangle, the side opposite the right angle is called the hypotenuse.
8.1 Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Converse of the Pythagorean Theorem 9-3
Power Point for 1/24.
Pythagorean Theorem 5.4. Learn the Pythagorean Theorem. Define Pythagorean triple. Learn the Pythagorean Inequality. Solve problems with the Pythagorean.
Objective: To use the Pythagorean Theorem and its converse.
Pythagorean Theorem And Its Converse
9.3 Converse of a Pythagorean Theorem Classifying Triangles by their sides.
Section 8-1: The Pythagorean Theorem and its Converse.
The Pythagorean Theorem
Goal 1: To use the Pythagorean Theorem Goal 2: To use the Converse of the Pythagorean Theorem.
8.1 The Pythagorean Theorem and Its Converse We will learn to use the Pythagorean Theorem and its converse.
Geometry Section 9.3 Pythagorean Theorem Converse.
The Converse Of The Pythagorean Theorem
The Pythagorean Theorem
Geometry Section 7.2 Use the Converse of the Pythagorean Theorem.
Lesson 7-2: Pythagorean Theorem. Pythagorean Theorem In a ________ ________, the sum of the squares of the ______ of a right triangle will equal the square.
Pythagorean Theorem and Its Converse Chapter 8 Section 1.
Converse of Pythagorean Theorem
Pythagorean Theorem Theorem 8-1: Pythagorean Theorem – In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of.
3/11-3/ The Pythagorean Theorem. Learning Target I can use the Pythagorean Theorem to find missing sides of right triangles.
Section 8-3 The Converse of the Pythagorean Theorem.
9.3 The Converse of the Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
CONVERSE OF THE PYTHAGOREAN THEOREM. PYTHAGOREAN TRIPLES Values that work as whole numbers in the Pythagorean Theorem Primitive Triples will not reduce.
Lesson 8-3 The Converse of the Pythagorean Theorem (page 295) Essential Question How can you determine whether a triangle is acute, right, or obtuse?
Lesson 5-7 Use the Pythagorean Thm 1 Identify the Pythagorean triples 2 Use the Pythagorean inequalities to classify ∆s 3.
8.1 Pythagorean Theorem Understand how to use the Pythagorean Theorem and its converse to solve problems Do Now: 1. An entertainment center is 52 in. wide.
Introduction to Chapter 4: Pythagorean Theorem and Its Converse
Warm Up Classify each triangle by its angle measures. 3. Simplify
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
8.1 Pythagorean Theorem and Its Converse
8-1: The Pythagorean Theorem and its Converse
9.3 Converse of a Pythagorean Theorem
7-2 The Pythagorean Theorem
The Converse Of The Pythagorean Theorem
The Converse of the Pythagorean Theorem
The Converse of the Pythagorean Theorem
4.5 The Converse of the Pythagorean Theorem
Section 7.2 Pythagorean Theorem and its Converse Objective: Students will be able to use the Pythagorean Theorem and its Converse. Warm up Theorem 7-4.
The Pythagorean Theorem
Bellringer Simplify each expression 5 ∙ ∙ 8.
7.2 The Pythagorean Theorem and its Converse
Pythagorean Theorem and Its Converse
9.3 The Converse of the Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Lesson 8 – 2 The Pythagorean Theorem and Its Converse
The Pythagorean Theorem
The Pythagorean Theorem
8-2 The Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem
9.2 The Pythagorean Theorem
C = 10 c = 5.
Class Greeting.
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem
C = 10 c = 5.
The Pythagorean Theorem
The Pythagorean Theorem
Objective: To use the Pythagorean Theorem and its converse.
Converse to the Pythagorean Theorem
7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE
Presentation transcript:

EQ: How can we use the Pythagoren Theorem and Triangle Inequalities to identify a triangle?

A set of three nonzero whole numbers a, b, and c such that a 2 + b 2 = c 2 is called a Pythagorean triple.

Find the missing side length. Tell if the side lengths form a Pythagorean triple. Explain. a 2 + b 2 = c = c 2 Substitute 14 for a and 48 for b. Pythagorean Theorem 2500 = c 2 Multiply and add. 50 = c Find the positive square root. The side lengths are nonzero whole numbers that satisfy the equation a 2 + b 2 = c 2, so they form a Pythagorean triple.

The converse of the Pythagorean Theorem gives you a way to tell if a triangle is a right triangle when you know the side lengths.

You can also use side lengths to classify a triangle as acute or obtuse. A B C c b a

To understand why the Pythagorean inequalities are true, consider ∆ABC.

By the Triangle Inequality Theorem, the sum of any two side lengths of a triangle is greater than the third side length. Remember!

Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 5, 7, 10 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 5, 7, and 10 can be the side lengths of a triangle.

Step 2 Classify the triangle. c 2 = a 2 + b 2 ? Compare c 2 to a 2 + b = ? Substitute the longest side for c. 100 = ? Multiply. 100 > 74 Add and compare. Since c 2 > a 2 + b 2, the triangle is obtuse.

Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 5, 8, 17 Step 1 Determine if the measures form a triangle. Since = 13 and 13 > 17, these cannot be the side lengths of a triangle.

Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 7, 12, 16 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 7, 12, and 16 can be the side lengths of a triangle.

Step 2 Classify the triangle. c 2 = a 2 + b 2 ? Compare c 2 to a 2 + b = ? Substitute the longest side for c. 256 = ? Multiply. 256 > 193 Add and compare. Since c 2 > a 2 + b 2, the triangle is obtuse.