1 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent.

Slides:



Advertisements
Similar presentations
Ch 7.6: Complex Eigenvalues
Advertisements

5.4 Basis And Dimension.
5.1 Real Vector Spaces.
9. Two Functions of Two Random Variables
CHAPTER 8 More About Estimation. 8.1 Bayesian Estimation In this chapter we introduce the concepts related to estimation and begin this by considering.
1 12. Principles of Parameter Estimation The purpose of this lecture is to illustrate the usefulness of the various concepts introduced and studied in.
STAT 497 APPLIED TIME SERIES ANALYSIS
6. Mean, Variance, Moments and Characteristic Functions
A second order ordinary differential equation has the general form
Chapter 5 Orthogonality
1 17. Long Term Trends and Hurst Phenomena From ancient times the Nile river region has been known for its peculiar long-term behavior: long periods of.
From PET to SPLIT Yuri Kifer. PET: Polynomial Ergodic Theorem (Bergelson) preserving and weakly mixing is bounded measurable functions polynomials,integer.
SUMS OF RANDOM VARIABLES Changfei Chen. Sums of Random Variables Let be a sequence of random variables, and let be their sum:
SYSTEMS Identification
15. Poisson Processes In Lecture 4, we introduced Poisson arrivals as the limiting behavior of Binomial random variables. (Refer to Poisson approximation.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
Visual Recognition Tutorial
19. Series Representation of Stochastic Processes
Lecture II-2: Probability Review
Linear Algebra Chapter 4 Vector Spaces.
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 13 Oct 14, 2005 Nanjing University of Science & Technology.
All of Statistics Chapter 5: Convergence of Random Variables Nick Schafer.
1 As we have seen in section 4 conditional probability density functions are useful to update the information about an event based on the knowledge about.
1 1. Basics Probability theory deals with the study of random phenomena, which under repeated experiments yield different outcomes that have certain underlying.
CHAPTER 4 Multiple Random Variable
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Two Functions of Two Random.
1 7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to.
1 5. Functions of a Random Variable Let X be a r.v defined on the model and suppose g(x) is a function of the variable x. Define Is Y necessarily a r.v?
1 2. Independence and Bernoulli Trials Independence: Events A and B are independent if It is easy to show that A, B independent implies are all independent.
LIAL HORNSBY SCHNEIDER
1 One Function of Two Random Variables Given two random variables X and Y and a function g(x,y), we form a new random variable Z as Given the joint p.d.f.
1 Let X represent a Binomial r.v as in (3-42). Then from (2-30) Since the binomial coefficient grows quite rapidly with n, it is difficult to compute (4-1)
SUPA Advanced Data Analysis Course, Jan 6th – 7th 2009 Advanced Data Analysis for the Physical Sciences Dr Martin Hendry Dept of Physics and Astronomy.
Multiple Random Variables Two Discrete Random Variables –Joint pmf –Marginal pmf Two Continuous Random Variables –Joint Distribution (PDF) –Joint Density.
1 Two Functions of Two Random Variables In the spirit of the previous lecture, let us look at an immediate generalization: Suppose X and Y are two random.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Principles of Parameter Estimation.
1 Functions of a Random Variable Let X be a r.v defined on the model and suppose g(x) is a function of the variable x. Define Is Y necessarily a r.v? If.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Functions of a Random Variable.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Two Random Variables.
Series Solutions of Linear Differential Equations CHAPTER 5.
1 6. Mean, Variance, Moments and Characteristic Functions For a r.v X, its p.d.f represents complete information about it, and for any Borel set B on the.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Mean, Variance, Moments and.
Operations on Multiple Random Variables
1 8. One Function of Two Random Variables Given two random variables X and Y and a function g(x,y), we form a new random variable Z as Given the joint.
1 3. Random Variables Let ( , F, P) be a probability model for an experiment, and X a function that maps every to a unique point the set of real numbers.
SYSTEMS Identification Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference: “System Identification Theory For The User” Lennart.
Chapter 5a:Functions of Random Variables Yang Zhenlin.
Geology 6600/7600 Signal Analysis 02 Sep 2015 © A.R. Lowry 2015 Last time: Signal Analysis is a set of tools used to extract information from sequences.
1 6. Mean, Variance, Moments and Characteristic Functions For a r.v X, its p.d.f represents complete information about it, and for any Borel set B on the.
Joint Moments and Joint Characteristic Functions.
One Function of Two Random Variables
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
Virtual University of Pakistan Lecture No. 26 Statistics and Probability Miss Saleha Naghmi Habibullah.
Copyright © Cengage Learning. All rights reserved. 5 Joint Probability Distributions and Random Samples.
Geology 6600/7600 Signal Analysis 04 Sep 2014 © A.R. Lowry 2015 Last time: Signal Analysis is a set of tools used to extract information from sequences.
Advanced Algorithms Analysis and Design By Dr. Nazir Ahmad Zafar Dr Nazir A. Zafar Advanced Algorithms Analysis and Design.
12. Principles of Parameter Estimation
7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to record.
5. Functions of a Random Variable
5. Functions of a Random Variable
11. Conditional Density Functions and Conditional Expected Values
8. One Function of Two Random Variables
7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to record.
11. Conditional Density Functions and Conditional Expected Values
9. Two Functions of Two Random Variables
12. Principles of Parameter Estimation
16. Mean Square Estimation
7. Two Random Variables In many experiments, the observations are expressible not as a single quantity, but as a family of quantities. For example to record.
8. One Function of Two Random Variables
Presentation transcript:

1 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the information contained in the joint p.d.f of two r.vs. Given two r.vs X and Y and a function define the r.v Using (6-2), we can define the mean of Z to be (10-1) (10-2) PILLAI

2 However, the situation here is similar to that in (6-13), and it is possible to express the mean of in terms of without computing To see this, recall from (5-26) and (7-10) that where is the region in xy plane satisfying the above inequality. From (10-3), we get As covers the entire z axis, the corresponding regions are nonoverlapping, and they cover the entire xy plane. (10-3) (10-4) PILLAI

3 By integrating (10-4), we obtain the useful formula or If X and Y are discrete-type r.vs, then Since expectation is a linear operator, we also get (10-5) (10-6) (10-7) (10-8) PILLAI

4 If X and Y are independent r.vs, it is easy to see that and are always independent of each other. In that case using (10-7), we get the interesting result However (10-9) is in general not true (if X and Y are not independent). In the case of one random variable (see (10- 6)), we defined the parameters mean and variance to represent its average behavior. How does one parametrically represent similar cross-behavior between two random variables? Towards this, we can generalize the variance definition given in (6-16) as shown below: (10-9) PILLAI

5 Covariance: Given any two r.vs X and Y, define By expanding and simplifying the right side of (10-10), we also get It is easy to see that To see (10-12), let so that (10-10) (10-12) (10-11) (10-13) PILLAI

6 The right side of (10-13) represents a quadratic in the variable a that has no distinct real roots (Fig. 10.1). Thus the roots are imaginary (or double) and hence the discriminant must be non-positive, and that gives (10-12). Using (10-12), we may define the normalized parameter or and it represents the correlation coefficient between X and Y. (10-14) Fig (10-15) PILLAI

7 Uncorrelated r.vs: If then X and Y are said to be uncorrelated r.vs. From (11), if X and Y are uncorrelated, then Orthogonality: X and Y are said to be orthogonal if From (10-16) - (10-17), if either X or Y has zero mean, then orthogonality implies uncorrelatedness also and vice-versa. Suppose X and Y are independent r.vs. Then from (10-9) with we get and together with (10-16), we conclude that the random variables are uncorrelated, thus justifying the original definition in (10-10). Thus independence implies uncorrelatedness. (10-16) (10-17) PILLAI

8 Naturally, if two random variables are statistically independent, then there cannot be any correlation between them However, the converse is in general not true. As the next example shows, random variables can be uncorrelated without being independent. Example 10.1: Let   Suppose X and Y are independent. Define Z = X + Y, W = X - Y. Show that Z and W are dependent, but uncorrelated r.vs. Solution: gives the only solution set to be Moreover and PILLAI

9 (10-18) Thus (see the shaded region in Fig. 10.2) and hence or by direct computation ( Z = X + Y ) Fig PILLAI

10 and Clearly Thus Z and W are not independent. However and and hence implying that Z and W are uncorrelated random variables. (10-19) (10-20) (10-21) (10-22) PILLAI

11 Example 10.2: Let Determine the variance of Z in terms of and Solution: and using (10-15) In particular if X and Y are independent, then and (10-23) reduces to Thus the variance of the sum of independent r.vs is the sum of their variances (10-23) (10-24) PILLAI

12 Moments: represents the joint moment of order (k,m) for X and Y. Following the one random variable case, we can define the joint characteristic function between two random variables which will turn out to be useful for moment calculations. Joint characteristic functions: The joint characteristic function between X and Y is defined as Note that (10-25) (10-26) PILLAI

13 It is easy to show that If X and Y are independent r.vs, then from (10-26), we obtain Also More on Gaussian r.vs : From Lecture 7, X and Y are said to be jointly Gaussian as if their joint p.d.f has the form in (7- 23). In that case, by direct substitution and simplification, we obtain the joint characteristic function of two jointly Gaussian r.vs to be (10-27) (10-28) (10-29) PILLAI

14 (10-30) Equation (10-14) can be used to make various conclusions. Letting in (10-30), we get and it agrees with (6-47). From (7-23) by direct computation using (10-11), it is easy to show that for two jointly Gaussian random variables Hence from (10-14), in represents the actual correlation coefficient of the two jointly Gaussian r.vs in (7-23). Notice that implies (10-31) PILLAI

15 Thus if X and Y are jointly Gaussian, uncorrelatedness does imply independence between the two random variables. Gaussian case is the only exception where the two concepts imply each other. Example 10.3: Let X and Y be jointly Gaussian r.vs with parameters Define Determine Solution: In this case we can make use of characteristic function to solve this problem. (10-32) PILLAI

16 From (10-30) with u and v replaced by au and bu respectively we get where Notice that (10-33) has the same form as (10-31), and hence we conclude that is also Gaussian with mean and variance as in (10-34) - (10-35), which also agrees with (10- 23). From the previous example, we conclude that any linear combination of jointly Gaussian r.vs generate a Gaussian r.v. (10-33) (10-34) (10-35) PILLAI

17 In other words, linearity preserves Gaussianity. We can use the characteristic function relation to conclude an even more general result. Example 10.4: Suppose X and Y are jointly Gaussian r.vs as in the previous example. Define two linear combinations what can we say about their joint distribution? Solution: The characteristic function of Z and W is given by As before substituting (10-30) into (10-37) with u and v replaced by au + cv and bu + dv respectively, we get (10-36) (10-37) PILLAI

18 (10-38) where and From (10-38), we conclude that Z and W are also jointly distributed Gaussian r.vs with means, variances and correlation coefficient as in (10-39) - (10-43). (10-39) (10-40) (10-41) (10-42) (10-43) PILLAI

19 To summarize, any two linear combinations of jointly Gaussian random variables (independent or dependent) are also jointly Gaussian r.vs. Of course, we could have reached the same conclusion by deriving the joint p.d.f using the technique developed in section 9 (refer (7-29)). Gaussian random variables are also interesting because of the following result: Central Limit Theorem: Suppose are a set of zero mean independent, identically distributed (i.i.d) random Linear operator Gaussian input Gaussian output Fig PILLAI

20 variables with some common distribution. Consider their scaled sum Then asymptotically (as ) Proof: Although the theorem is true under even more general conditions, we shall prove it here under the independence assumption. Let represent their common variance. Since we have (10-44) (10-45) (10-46) (10-47) PILLAI

21 Consider where we have made use of the independence of the r.vs But where we have made use of (10-46) - (10-47). Substituting (10-49) into (10-48), we obtain and as (10-48) (10-49) (10-50) (10-51) PILLAI

22 (10-52) [Note that terms in (10-50) decay faster than But (10-51) represents the characteristic function of a zero mean normal r.v with variance and (10-45) follows. The central limit theorem states that a large sum of independent random variables each with finite variance tends to behave like a normal random variable. Thus the individual p.d.fs become unimportant to analyze the collective sum behavior. If we model the noise phenomenon as the sum of a large number of independent random variables (eg: electron motion in resistor components), then this theorem allows us to conclude that noise behaves like a Gaussian r.v. since PILLAI

23 It may be remarked that the finite variance assumption is necessary for the theorem to hold good. To prove its importance, consider the r.vs to be Cauchy distributed, and let where each  Then since substituting this into (10-48), we get which shows that Y is still Cauchy with parameter In other words, central limit theorem doesn’t hold good for a set of Cauchy r.vs as their variances are undefined. (10-53) (10-54) (10-55) PILLAI

24 Joint characteristic functions are useful in determining the p.d.f of linear combinations of r.vs. For example, with X and Y as independent Poisson r.vs with parameters and respectively, let Then But from (6-33) so that  i.e., sum of independent Poisson r.vs is also a Poisson random variable. (10-56) (10-57) (10-58) (10-59) PILLAI