Time Series and Forecasting

Slides:



Advertisements
Similar presentations
Decomposition Method.
Advertisements

©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Lesson 12.
ECON 251 Research Methods 11. Time Series Analysis and Forecasting.
Time Series and Forecasting
19- 1 Chapter Nineteen McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Ka-fu Wong © 2003 Chap Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
Qualitative Forecasting Methods
Statistics for Managers Using Microsoft® Excel 5th Edition
Analyzing and Forecasting Time Series Data
Chapter 12 - Forecasting Forecasting is important in the business decision-making process in which a current choice or decision has future implications:
Chapter 5 Time Series Analysis
Chapter 3 Forecasting McGraw-Hill/Irwin
Part II – TIME SERIES ANALYSIS C2 Simple Time Series Methods & Moving Averages © Angel A. Juan & Carles Serrat - UPC 2007/2008.
Chapter 16 Time-Series Analysis and Forecasting
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 19 Time-Series Analysis and Forecasting
© 2011 Pearson Education, Inc. Statistics for Business and Economics Chapter 13 Time Series: Descriptive Analyses, Models, & Forecasting.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Time Series and Forecasting Chapter 16.
Slides 13b: Time-Series Models; Measuring Forecast Error
CHAPTER 18 Models for Time Series and Forecasting
© 2003 Prentice-Hall, Inc.Chap 12-1 Business Statistics: A First Course (3 rd Edition) Chapter 12 Time-Series Forecasting.
Correlation and Linear Regression
1 1 Slide © 2009 South-Western, a part of Cengage Learning Chapter 6 Forecasting n Quantitative Approaches to Forecasting n Components of a Time Series.
Slides by John Loucks St. Edward’s University.
Introduction to Linear Regression and Correlation Analysis
Linear Regression and Correlation
(Regression, Correlation, Time Series) Analysis
Time Series “The Art of Forecasting”. What Is Forecasting? Process of predicting a future event Underlying basis of all business decisions –Production.
Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved. Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved.
CLASS B.Sc.III PAPER APPLIED STATISTICS. Time Series “The Art of Forecasting”
Time-Series Analysis and Forecasting – Part V To read at home.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
16-1 Linear Trend The long term trend of many business series often approximates a straight line.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Time Series Forecasting Chapter 16.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Time Series Forecasting Chapter 13.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Chapter 6 Business and Economic Forecasting Root-mean-squared Forecast Error zUsed to determine how reliable a forecasting technique is. zE = (Y i -
Time series Decomposition Farideh Dehkordi-Vakil.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 20 Time Series Analysis and Forecasting.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
© 1999 Prentice-Hall, Inc. Chap Chapter Topics Component Factors of the Time-Series Model Smoothing of Data Series  Moving Averages  Exponential.
Economics 173 Business Statistics Lecture 26 © Fall 2001, Professor J. Petry
COMPLETE BUSINESS STATISTICS
Economics 173 Business Statistics Lecture 25 © Fall 2001, Professor J. Petry
Time Series and Forecasting
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 14 l Time Series: Understanding Changes over Time.
1 1 Chapter 6 Forecasting n Quantitative Approaches to Forecasting n The Components of a Time Series n Measures of Forecast Accuracy n Using Smoothing.
Time Series and Forecasting Chapter 16 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Times Series Forecasting and Index Numbers Chapter 16 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Time Series and Forecasting Chapter 16.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Statistics for Business and Economics Module 2: Regression and time series analysis Spring 2010 Lecture 7: Time Series Analysis and Forecasting 1 Priyantha.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Chapter 3 Lect 6 Forecasting. Seasonality – Repetition at Fixed Intervals Seasonal variations –Regularly repeating movements in series values that can.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
TIME SERIES MODELS. Definitions Forecast is a prediction of future events used for planning process. Time Series is the repeated observations of demand.
Correlation and Linear Regression Chapter 13 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Time Series and Forecasting Chapter 16.
Yandell – Econ 216 Chap 16-1 Chapter 16 Time-Series Forecasting.
Chapter Nineteen McGraw-Hill/Irwin
Correlation and Simple Linear Regression
John Loucks St. Edward’s University . SLIDES . BY.
Time Series and Forecasting
DSS-ESTIMATING COSTS Cost estimation is the process of estimating the relationship between costs and cost driver activities. We estimate costs for three.
Chapter Nineteen McGraw-Hill/Irwin
TIME SERIES MODELS – MOVING AVERAGES.
Presentation transcript:

Time Series and Forecasting Chapter 16 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.

Learning Objectives LO1 Define the components of a time series LO2 Compute moving average LO3 Determine a linear trend equation LO4 Use a trend equation for a nonlinear trend LO5 Use a trend equation to compute forecasts LO6 Determine and interpret a set of seasonal indexes LO7 Determine and interpret a set of seasonal indexes LO8 Deseasonalize data using a seasonal index LO9 Calculate seasonally adjusted forecasts LO10 Test for autocorrelation 16-2

Time Series and its Components LO1 Define the components of a time series. Time Series and its Components TIME SERIES is a collection of data recorded over a period of time (weekly, monthly, quarterly), an analysis of history, that can be used by management to make current decisions and plans based on long-term forecasting. It usually assumes past pattern to continue into the future Components of a Time Series Secular Trend – the smooth long term direction of a time series Cyclical Variation – the rise and fall of a time series over periods longer than one year Seasonal Variation – Patterns of change in a time series within a year which tends to repeat each year Irregular Variation – classified into: Episodic – unpredictable but identifiable Residual – also called chance fluctuation and unidentifiable 16-3

The Moving Average Method LO2 Compute a moving average. The Moving Average Method Useful in smoothing time series to see its trend Basic method used in measuring seasonal fluctuation Applicable when time series follows fairly linear trend that have definite rhythmic pattern 16-4

Weighted Moving Average LO2 A simple moving average assigns the same weight to each observation in averaging Weighted moving average assigns different weights to each observation Most recent observation receives the most weight, and the weight decreases for older data values In either case, the sum of the weights = 1 Cedar Fair operates seven amusement parks and five separately gated water parks. Its combined attendance (in thousands) for the last 12 years is given in the following table. A partner asks you to study the trend in attendance. Compute a three-year moving average and a three-year weighted moving average with weights of 0.2, 0.3, and 0.5 for successive years. 16-5

LO3 Determine a linear trend equation. The long term trend of many business series often approximates a straight line Use the least squares method in Simple Linear Regression (Chapter 13) to find the best linear relationship between 2 variables Code time (t) and use it as the independent variable E.g. let t be 1 for the first year, 2 for the second, and so on (if data are annual) 16-6

LO4 Use a linear trend equation to compute forecasts. Linear Trend – Using the Least Squares Method: An Example The sales of Jensen Foods, a small grocery chain located in southwest Texas, since 2005 are: Year t Sales ($ mil.) 2005 1 7 2006 2 10 2007 3 9 2008 4 11 2009 5 13 16-7

LO5 Compute a trend equation for a nonlinear trend. Nonlinear Trends A linear trend equation is used when the data are increasing (or decreasing) by equal amounts A nonlinear trend equation is used when the data are increasing (or decreasing) by increasing amounts over time When data increase (or decrease) by equal percents or proportions plot will show curvilinear pattern Top graph is original data Graph on bottom right is the log base 10 of the original data which now is linear (Excel function: Y = log(x) or log(x,10) Using Data Analysis in Excel, generate the linear equation Regression output shown in next slide 16-8

Log Trend Equation – Gulf Shores Importers Example 16-9

Log Trend Equation – Gulf Shores Importers Example 16-10

Seasonal Variation and Seasonal Index LO6 Determine and interpret a set of seasonal indexes. Seasonal Variation and Seasonal Index One of the components of a time series Seasonal variations are fluctuations that coincide with certain seasons and are repeated year after year Understanding seasonal fluctuations help plan for sufficient goods and materials on hand to meet varying seasonal demand Analysis of seasonal fluctuations over a period of years help in evaluating current sales SEASONAL INDEX A number, usually expressed in percent, that expresses the relative value of a season with respect to the average for the year (100%) Ratio-to-moving-average method The method most commonly used to compute the typical seasonal pattern It eliminates the trend (T), cyclical (C), and irregular (I) components from the time series 16-11

Seasonal Index – An Example LO6 Seasonal Index – An Example EXAMPLE The table below shows the quarterly sales for Toys International for the years 2001 through 2006. The sales are reported in millions of dollars. Determine a quarterly seasonal index using the ratio-to-moving-average method. Step (1) – Organize time series data in column form Step (2) Compute the 4-quarter moving totals Step (3) Compute the 4-quarter moving averages Step (4) Compute the centered moving averages by getting the average of two 4-quarter moving averages Step (5) Compute ratio by dividing actual sales by the centered moving averages 16-12

Seasonal Index – An Example LO6 Seasonal Index – An Example 16-13

Actual versus Deseasonalized Sales for Toys International LO7 Deseasonalize data using a seasonal index. Actual versus Deseasonalized Sales for Toys International Deseasonalized Sales = Sales / Seasonal Index 16-14

Seasonal Index – An Example Using Excel LO7 Seasonal Index – An Example Using Excel Given the deseasonalized linear equation for Toys International sales as Ŷ=8.109 + 0.0899t, generate the seasonally adjusted forecast for each of the quarters of 2010 Ŷ = 8.10 + 0.0899(28) Ŷ X SI = 10.62648 X 1.519 16-15

Durbin-Watson Statistic LO9 Test for autocorrelation. Durbin-Watson Statistic Tests the autocorrelation among the residuals The Durbin-Watson statistic, d, is computed by first determining the residuals for each observation: et = (Yt – Ŷt) Then compute d using the following equation: Range of d is 0 to 4 d = 2 No autocorrelation d close to 0 Positive autocorrelation d beyond 2 Negative autocorrelation Hypothesis Test: H0: No residual correlation (ρ = 0) H1: Positive residual correlation (ρ > 0) Critical values for d are found in Appendix B.10 using α - significance level n – sample size K – the number of predictor variables 16-16