MIT Lincoln Laboratory MIS IGARSS11-1 RVL 9/15/2010 An Atmospheric Algorithm Suite Based on Neural Networks for Microwave Imager/Sounders W. J. Blackwell,

Slides:



Advertisements
Similar presentations
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
Advertisements

Integrated Profiling at the AMF
Precipitation Products PPS Anke Thoss, SMHI User Workshop, February 2015, Madrid.
Characterization of ATMS Bias Using GPSRO Observations Lin Lin 1,2, Fuzhong Weng 2 and Xiaolei Zou 3 1 Earth Resources Technology, Inc.
A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
Allison Parker Remote Sensing of the Oceans and Atmosphere.
Passive Measurements of Rain Rate in Hurricanes Ruba A.Amarin CFRSL December 10, 2005.
1 FWC IPWG MIT Lincoln Laboratory * This work was sponsored by the National Aeronautics and Space Administration under Contract NNG 04HZ53C,
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Slide 1 IPWG, Beijing, October 2008 Slide 1 Assimilation of rain and cloud-affected microwave radiances at ECMWF Alan Geer, Peter Bauer, Philippe.
ATS 351 Lecture 8 Satellites
16/06/20151 Validating the AVHRR Cloud Top Temperature and Height product using weather radar data COST 722 Expert Meeting Sauli Joro.
Bredbeck Workshop, 7 – 10 July 2003 Jörg Schulz Meteorological Institute, University of Bonn Harald Czekala RPG Radiometer.
MWR Algorithms (Wentz): Provide and validate wind, rain and sea ice [TBD] retrieval algorithms for MWR data Between now and launch (April 2011) 1. In-orbit.
Profiling Clouds with Satellite Imager Data and Potential Applications William L. Smith Jr. 1, Douglas A. Spangenberg 2, Cecilia Fleeger 2, Patrick Minnis.
Motivation Many GOES products are not directly used in NWP but may help in diagnosing problems in forecasted fields. One example is the GOES cloud classification.
Experiments with the microwave emissivity model concerning the brightness temperature observation error & SSM/I evaluation Henning Wilker, MIUB Matthias.
Diagnosing Climate Change from Satellite Sounding Measurements – From Filter Radiometers to Spectrometers William L. Smith Sr 1,2., Elisabeth Weisz 1,
Aquarius Algorithm Workshop March 2007 College of Engineering Department of Atmospheric, Oceanic & Space Sciences Chris Ruf Space Physics Research.
Retrieving Snowpack Properties From Land Surface Microwave Emissivities Based on Artificial Neural Network Techniques Narges Shahroudi William Rossow NOAA-CREST.
- Microwave Remote Sensing Group IGARSS 2011, July 23-29, Vancouver, Canada 1 M. Brogioni 1, S. Pettinato 1, E. Santi 1, S. Paloscia 1, P. Pampaloni 1,
Precipitation Retrievals Over Land Using SSMIS Nai-Yu Wang 1 and Ralph R. Ferraro 2 1 University of Maryland/ESSIC/CICS 2 NOAA/NESDIS/STAR.
Evaluation and Improvement of AMSU Precipitation Retrievals Over Ocean Daniel Vila 1, Ralph R. Ferraro 1,2 1. CICS/ESSIC-NOAA, University of Maryland College.
A Combined Radar/Radiometer Retrieval for Precipitation IGARSS – Session 1.1 Vancouver, Canada 26 July, 2011 Christian Kummerow 1, S. Joseph Munchak 1,2.
Passive Microwave Remote Sensing
Development and evaluation of Passive Microwave SWE retrieval equations for mountainous area Naoki Mizukami.
A NON-RAINING 1DVAR RETRIEVAL FOR GMI DAVID DUNCAN JCSDA COLLOQUIUM 7/30/15.
Faculty of Technology and Environment Prince of Songkla University 1 Chinnawat Surussavadee July 2011 Evaluation of High-Resolution.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 POES Microwave Products Presented.
MIT REMOTE SENSING AND ESTIMATION GROUP 1 Geosynchronous Microwave Sounding of Precipitation Parameters at Convective Scales David.
IGARSS 2011, July 24-29, Vancouver, Canada 1 A PRINCIPAL COMPONENT-BASED RADIATIVE TRANSFER MODEL AND ITS APPLICATION TO HYPERSPECTRAL REMOTE SENSING Xu.
WATER VAPOR RETRIEVAL OVER CLOUD COVER AREA ON LAND Dabin Ji, Jiancheng Shi, Shenglei Zhang Institute for Remote Sensing Applications Chinese Academy of.
USE OF AIRS/AMSU DATA FOR WEATHER AND CLIMATE RESEARCH Joel Susskind University of Maryland May 12, 2005.
NPOESS Conical Scanning Microwave Imager/ Sounder (CMIS) Overview
A review on different methodologies employed in current SWE products from spaceborne passive microwave observations Nastaran Saberi, Richard Kelly Interdisciplinary.
Improvement of Cold Season Land Precipitation Retrievals Through The Use of Field Campaign Data and High Frequency Microwave Radiative Transfer Model IPWG.
Kazumasa Aonashi (MRI/JMA) Takuji Kubota (Osaka Pref. Univ.) Nobuhiro Takahashi (NICT) 3rd IPWG Workshop Oct.24, 2006 Developnemt of Passive Microwave.
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
A Global Rainfall Validation Strategy Wesley Berg, Christian Kummerow, and Tristan L’Ecuyer Colorado State University.
Response of active and passive microwave sensors to precipitation at mid- and high altitudes Ralf Bennartz University of Wisconsin Atmospheric and Oceanic.
Locally Optimized Precipitation Detection over Land Grant Petty Atmospheric and Oceanic Sciences University of Wisconsin - Madison.
Layered Water Vapor Quick Guide by NASA / SPoRT and CIRA Why is the Layered Water Vapor Product important? Water vapor is essential for creating clouds,
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
MIIDAPS Application to GSI for QC and Dynamic Emissivity in Passive Microwave Data Assimilation.
CIMSS Forward Model Capability to Support GOES-R Measurement Simulations Tom Greenwald, Hung-Lung (Allen) Huang, Dave Tobin, Ping Yang*, Leslie Moy, Erik.
Considerations for the Physical Inversion of Cloudy Radiometric Satellite Observations.
3 rd IPWG 2006: 1 RVL 2/14/2016 MIT Lincoln Laboratory Modeling Validation with NAST-M and a Cloud-Resolving Model at GHz This work was sponsored.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Basis of GV for Japan’s Hydro-Meteorological Process Modelling Research GPM Workshop Sep. 27 to 30, Taipei, Taiwan Toshio Koike, Tobias Graf, Mirza Cyrus.
A Combined Radar-Radiometer Approach to Estimate Rain Rate Profile and Underlying Surface Wind Speed over the Ocean Shannon Brown and Christopher Ruf University.
Retrieval of cloud parameters from the new sensor generation satellite multispectral measurement F. ROMANO and V. CUOMO ITSC-XII Lorne, Victoria, Australia.
A New Ocean Suite Algorithm for AMSR2 David I. Duncan September 16 th, 2015 AMSR Science Team Meeting Huntsville, AL.
Active and passive microwave remote sensing of precipitation at high latitudes R. Bennartz - M. Kulie - C. O’Dell (1) S. Pinori – A. Mugnai (2) (1) University.
Apr 17, 2009F. Iturbide-Sanchez A Regressed Rainfall Rate Based on TRMM Microwave Imager Data and F16 Rainfall Rate Improvement F. Iturbide-Sanchez, K.
Downscaling Global Climate Model Forecasts by Using Neural Networks Mark Bailey, Becca Latto, Dr. Nabin Malakar, Dr. Barry Gross, Pedro Placido The City.
1 Moisture Profile Retrievals from Satellite Microwave Sounders for Weather Analysis Over Land and Ocean John M. Forsythe, Stanley Q. Kidder*, Andrew S.
Mesoscale Assimilation of Rain-Affected Observations Clark Amerault National Research Council Postdoctoral Associate - Naval Research Laboratory, Monterey,
Radiance Simulation System for OSSE  Objectives  To evaluate the impact of observing system data under the context of numerical weather analysis and.
Developing Winter Precipitation Algorithm over Land from Satellite Microwave and C3VP Field Campaign Observations Fifth Workshop of the International Precipitation.
Passive Microwave Remote Sensing
Calculation of Sea Surface Temperature Forward Radiative Transfer Model Approach Alec Bogdanoff, Florida State University Carol Anne Clayson and Brent.
Microwave Assimilation in Tropical Cyclones
Summer 2014 Group Meeting August 14, 2014 Scott Sieron
Tony Reale ATOVS Sounding Products (ITSVC-12)
Requirements for microwave inter-calibration
Hyperspectral IR Clear/Cloudy
Satellite Foundational Course for JPSS (SatFC-J)
Satellite Foundational Course for JPSS (SatFC-J)
Validation for TPW (PGE06)
Presentation transcript:

MIT Lincoln Laboratory MIS IGARSS11-1 RVL 9/15/2010 An Atmospheric Algorithm Suite Based on Neural Networks for Microwave Imager/Sounders W. J. Blackwell, R. Czerwinski, R. V. Leslie, M. Pieper, P. Rosenkranz*, J. Samra, D. H. Staelin*, C. Surrussavadee ‡, K. Wallenstein, & D. Zhang MIT Lincoln Laboratory * Research Laboratory of Electronics at MIT ‡ Prince of Songkla University IGARSS 2011: Vancouver, Canada 28 July 2011 This work was sponsored by the National Oceanic and Atmospheric Administration under contract FA C Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIS IGARSS11-2 RVL 9/15/2010 MIT Lincoln Laboratory Outline Overview Physics Retrieval Approach –Neural Networks –Radiative Transfer Training Datasets Expected performance Summary

MIS IGARSS11-3 RVL 9/15/2010 MIT Lincoln Laboratory Atmosphere EDR Suite Atmospheric Vertical Temperature Profile (AVTP) – Kelvin –Lower Atmospheric Sounding (Surface to 10 mb) –Upper Atmospheric Sounding (10 mb to ~0.01 mb) Atmospheric Vertical Moisture Profile (AVMP) – MMR g/kg Atmospheric Pressure Profile (APP) – millibar Total Water Content (TWC) - kg/m 2 or mm in a 3-km vertical segment Total Integrated Water Vapor (TIWV) - kg/m 2 or mm (a.k.a., precipitable water) Precipitation Rate/Type (PRT) – mm/hr and types: rain or ice Cloud Liquid Water Content (CLWC) – kg/m 2 or mm Cloud Ice Water Path (CIWP) - kg/m 2 or mm Profile Subset 2-D Field Subset

MIS IGARSS11-4 RVL 9/15/2010 MIT Lincoln Laboratory Algorithm Simulation Methodology

MIS IGARSS11-5 RVL 9/15/2010 MIT Lincoln Laboratory MIS Atmospheric Algorithm Methodology Cloud/precipitation products derived from cloud-resolving NWP models combined with multi-stream scattering models –Global NWP runs over ~5M pixels –Multi-phase microphysical modeling Profile products derived from global high-resolution analysis fields –Performance validated over many years (millions of pixels) for similar AMSU/AIRS algorithm –Framework allows for optimization of product spatial resolution Neural network estimators offer accuracy/robustness/speed –Very easy to code (large infrastructure currently available) –Very easy to upgrade (simply replace coefficient file) –Very low computational burden – can run on mobile terminals Physical Models + Stochastic Processing

MIS IGARSS11-6 RVL 9/15/2010 MIT Lincoln Laboratory PHYSICS AND PHENOMENOLOGY

MIS IGARSS11-7 RVL 9/15/2010 MIT Lincoln Laboratory Microwave Scattering and Absorption Atmospheric Transmission Hydrometeor Mie Scattering and Absorption Liquid water Ice Frequency [GHz]

MIS IGARSS11-8 RVL 9/15/2010 MIT Lincoln Laboratory Passive Microwave Sensing of Precipitation 35 km 45 km

MIS IGARSS11-9 RVL 9/15/2010 MIT Lincoln Laboratory Overview of SSMIS Channel Set and Spatial Resolutions V = vertical pol. H = horizontal pol. R = right-hand circ. * subset in precipitation algorithm km

MIS IGARSS11-10 RVL 9/15/2010 MIT Lincoln Laboratory SSMIS UAS Channel Characteristics

MIS IGARSS11-11 RVL 9/15/2010 MIT Lincoln Laboratory Temperature and Water Vapor Weighting Functions TemperatureWater Vapor 45° off-nadir angle

MIS IGARSS11-12 RVL 9/15/2010 MIT Lincoln Laboratory Upper Air Temperature Weighting Functions 26 uT 90 deg. (tropical) 65 uT 53 deg. (polar)

MIS IGARSS11-13 RVL 9/15/2010 MIT Lincoln Laboratory MULTILAYER FEEDFORWARD NEURAL NETWORKS

MIS IGARSS11-14 RVL 9/15/2010 MIT Lincoln Laboratory Neural Networks Nonlinear, Parameterized Function Approximators

MIS IGARSS11-15 RVL 9/15/2010 MIT Lincoln Laboratory Example: Temperature Profile Retrieval Advantages Relative to Linear Regression (LLSE)

MIS IGARSS11-16 RVL 9/15/2010 MIT Lincoln Laboratory Advantages Relative to Linear Regression Better Noise Immunity and Physical Representation Noise contribution: Component of retrieval error due only to sensor noise Atmosphere contribution: Retrieval error in the absence of sensor noise

MIS IGARSS11-17 RVL 9/15/2010 MIT Lincoln Laboratory RADIATIVE TRANSFER AND SIMULATION METHODOLOGY

MIS IGARSS11-18 RVL 9/15/2010 MIT Lincoln Laboratory Algorithm Simulation Methodology

MIS IGARSS11-19 RVL 9/15/2010 MIT Lincoln Laboratory Radiative Transfer / NWP Interface Issues Each level requires hydrometeor density per drop radius MM5 Pressure [mb] Mass Density [g/m 3 ] Radius [mm] Mass Density [g/m 3 ] graupel snow rain 10 mb Sekhon-Srivastava Marshall-Palmer Image courtesy of Colorado State University SSMIS (NGES)

MIS IGARSS11-20 RVL 9/15/2010 MIT Lincoln Laboratory PERFORMANCE VERIFICATION DATASETS

MIS IGARSS11-21 RVL 9/15/2010 MIT Lincoln Laboratory Geographical locations of the pixels in the MM5 and NOAA88b data sets

MIS IGARSS11-22 RVL 9/15/2010 MIT Lincoln Laboratory Mean and Standard Deviation of NOAA/MM5 Data Sets TemperatureWater Vapor

MIS IGARSS11-23 RVL 9/15/2010 MIT Lincoln Laboratory MM5 Cloudy Data Set

MIS IGARSS11-24 RVL 9/15/2010 MIT Lincoln Laboratory PERFORMANCE VERIFICATION

MIS IGARSS11-25 RVL 9/15/2010 MIT Lincoln Laboratory Precipitation Rate Retrieval Performance

MIS IGARSS11-26 RVL 9/15/2010 MIT Lincoln Laboratory Summary of Cloud Water/Ice Retrieval Performance

MIS IGARSS11-27 RVL 9/15/2010 MIT Lincoln Laboratory AVTP Retrieval Performance Cloudy (40 km) MM5 not valid at these high altitudes

MIS IGARSS11-28 RVL 9/15/2010 MIT Lincoln Laboratory Upper Air Sounding Performance SSMIS UAS channels (CH20-24) No Doppler effects IGRF-11 geomagnetic model Multi-layer Feedforward Neural Network NOAA88b dataset SSMIS Spec: –7-1 mb: 5 K –0.4 mb: 5.5 K – mb: 8 K

MIS IGARSS11-29 RVL 9/15/2010 MIT Lincoln Laboratory AVMP Retrieval Performance Cloudy (40 km) SSMIS: Greater of 1.5 g/kg or 20% IORDII: 10% objective Greater of 0.2 g/kg or 20% (surf. to 600 mb)

MIS IGARSS11-30 RVL 9/15/2010 MIT Lincoln Laboratory Clear-Air Atmospheric Pressure Profile Performance (40 km) APP derived using AVTP and AVMP retrievals and surface pressure (assumed perfect) Quality-controlled global radiosondes used for ground truth LandOcean

MIS IGARSS11-31 RVL 9/15/2010 MIT Lincoln Laboratory Summary Comprehensive, end-to-end performance assessment capability in place for all products in the Atmosphere EDR Suite –Minimal retrieval optimization performed at this point –Clear path to requirement compliance for all products Flexible, modular algorithm architecture easily accommodates changes to sensor characteristics and performance

MIS IGARSS11-32 RVL 9/15/2010 MIT Lincoln Laboratory Backup Slides

MIS IGARSS11-33 RVL 9/15/2010 MIT Lincoln Laboratory Simulated SSMIS Pass Over CONUS 50.3-GHz brightness temperature 40-km Spatial resolution 2/3 CONUS HRRR – 3 km CCA antenna pattern

MIS IGARSS11-34 RVL 9/15/2010 MIT Lincoln Laboratory SSMIS and AMSU Precipitation Rate Retrievals 8

MIS IGARSS11-35 RVL 9/15/2010 MIT Lincoln Laboratory Structure of the SSMIS Precipitation Algorithm Pixel Longitude/Latitude Brightness Temperatures Bias correctionInterpolate to fine retrieval grid Surface classification PCA Transform Channel Selection Spatial Perturbations Specialized Neural Network Surface-Classification-Dependent Weighting Retrieved Precipitation Parameters Channel Selection

MIS IGARSS11-36 RVL 9/15/2010 MIT Lincoln Laboratory Radiance Simulation Methodology CRM = MM5 1-km saved every 15 min RTM = multiple-stream radiative transfer solution (TBSCAT † or TBSOI*) Simulated NAST-M radiances Developed and adapted MIT software to LLGrid parallel computing facility MM5 grid levels Cloud Resolving Model (CRM) Radiative Transfer Model (RTM) Simulated Radiances SPATIAL FILTERING “Satellite Geometry” Toolbox (MATLAB) * Successive Order of Interaction: Heidinger A. K., et al., J. Appl. Meteor. Climatol., 2006 † TBSCAT: Rosenkranz, P. W., IEEE Trans. Geosci. Remote Sens. 2002

MIS IGARSS11-37 RVL 9/15/2010 MIT Lincoln Laboratory Histogram of Surface Pressures for the Synoptic Radiosonde Data Set

MIS IGARSS11-38 RVL 9/15/2010 MIT Lincoln Laboratory Geographical Locations of the Pixels in the Synoptic Radiosonde Data Sets ~200,000 quality-controlled radiosondes from representing all seasons

MIS IGARSS11-39 RVL 9/15/2010 MIT Lincoln Laboratory Precipitation Rate Performance

MIS IGARSS11-40 RVL 9/15/2010 MIT Lincoln Laboratory Precipitation Type Retrieval

MIS IGARSS11-41 RVL 9/15/2010 MIT Lincoln Laboratory Precipitation Rate Performance Stratified by Precipitation Type

MIS IGARSS11-42 RVL 9/15/2010 MIT Lincoln Laboratory Cloud Water/Ice Retrieval Performance

MIS IGARSS11-43 RVL 9/15/2010 MIT Lincoln Laboratory Total Integrated Water Vapor Performance (25 km)

MIS IGARSS11-44 RVL 9/15/2010 MIT Lincoln Laboratory AVMP Retrieval Performance Clear-air (40 km) Black = Ocean Green = Land Blue = Global SSMIS: Greater of 1.5 g/kg or 20% IORDII: 10% objective Greater of 0.2 g/kg or 20% (surf. to 600 mb)

MIS IGARSS11-45 RVL 9/15/2010 MIT Lincoln Laboratory Total Water Content Performance AltitudeOceanLandGlobalSpec. (IORDII) surface kg/m 2 5 km kg/m km kg/m 2 10 km kg/m 2 3-km “slabs” 25 km resolution cloudy MM5 dataset

MIS IGARSS11-46 RVL 9/15/2010 MIT Lincoln Laboratory Limitations and Degradation Precipitation –Effects all atmos. EDRs except PRT –Nominally, atmos. EDRs will be retrieved under 1 mm/hr –Difficult to quantify 1 mm/hr, will use status flags to classify the precipitation (e.g., “no precip.”, “stratiform”, “light convective”) –Status flags must determine if a CFOV has even one precipitation- impacted EFOV Land emissivity –Properly classifying land conditions (e.g., flooded or snow-covered) will make stratifications (i.e., a condition specific NN) more difficult to implement –Difficult to obtain a statistically-adequate sample set Land elevation –Difficult to obtain a statistically significant sample set to train on –Must evaluate whether training many altitude stratifications is worth the effort and cost