15-441 Computer Networking Intra-Domain Routing, Part I RIP (Routing Information Protocol)

Slides:



Advertisements
Similar presentations
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
Advertisements

What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
Data Communication and Networks Lecture 11 Internet Routing Algorithms and Protocols December 5, 2002 Joseph Conron Computer Science Department New York.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
Routing - I Important concepts: link state based routing, distance vector based routing.
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
Network Layer-11 CSE401N: Computer Networks Lecture-9 Network Layer & Routing.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Introduction to Networking Bin Lin TA March 3 rd, 2005 Recital 6.
Routing & IP Routing Protocols
Distance-Vector Routing COS 461: Computer Networks Spring 2010 (MW 3:00-4:20 in COS 105) Michael Freedman
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer The service should be independent of the router.
Katz, Stoica F04 EECS 122: Introduction to Computer Networks Link State and Distance Vector Routing Computer Science Division Department of Electrical.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Announcement r Project 2 extended to 2/20 midnight r Project 3 available this weekend r Homework 3 available today, will put it online.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4730: Computer Communication Networks (CCN) Network Layer (Routing) Shivkumar.
4: Network Layer4a-1 14: Intro to Routing Algorithms Last Modified: 7/12/ :17:44 AM.
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
EE 122: Intra-domain routing Ion Stoica September 30, 2002 (* this presentation is based on the on-line slides of J. Kurose & K. Rose)
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 18.
4: Network Layer 4a-1 14: Intro to Routing Algorithms Last Modified: 8/8/ :41:16 PM.
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
1 Week 6 Routing Concepts. 2 Network Layer Functions transport packet from sending to receiving hosts network layer protocols in every host, router path.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
IP routing. Simple Routing Table svr 4% netstat –r n Routing tables DestinationGatewayFlagsRefcntUseInterface UGH00emd UH10lo0.
Network Layer4-1 Chapter 4 Network Layer Part 3: Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
1 Network Layer Lecture 13 Imran Ahmed University of Management & Technology.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:
Network Layer4-1 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y)
The Network Layer & Routing
1 Week 5 Lecture 2 IP Layer. 2 Network layer functions transport packet from sending to receiving hosts transport packet from sending to receiving hosts.
Overview of Internet Routing (I) Fall 2004 CS644 Advanced Topics in Networking Sue B. Moon Division of Computer Science Dept. of EECS KAIST.
Routing 1 Network Layer Network Layer goals:  understand principles behind network layer services:  routing (path selection)  how a router works  instantiation.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
1 CSE524: Lecture 12 Network layer Functions. 2 Where we’re at… Internet architecture and history Internet protocols in practice Application layer Transport.
Switching, Forwarding and Routing. Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host,
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Internet and Intranet Protocols and Applications Lecture 9 Internet Routing Algorithms and Protocols March 27, 2002 Joseph Conron Computer Science Department.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer (2). Review Physical layer: move bits between physically connected stations Data link layer: move frames between physically connected stations.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing.
Routing Protocols 1 ProtocolsLayer name DNSApplication TCP, UDPTransport IPInternet (Network ) WiFi, Ethernet Link (Physical)
IP tutorial - #2 Routing KAIST Dept. of CS NC Lab.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Network Layer.
CS 5565 Network Architecture and Protocols
Network Layer Introduction Datagram networks IP: Internet Protocol
Routing: Distance Vector Algorithm
Distance Vector Routing: overview
Network layer functions
Chapter 4 – The Network Layer & Routing
14: Intro to Routing Algorithms
Road Map I. Introduction II. IP Protocols III. Transport Layer
ECE453 – Introduction to Computer Networks
Chapter 4: Network Layer
Communication Networks
ECSE-4730: Computer Communication Networks (CCN)
Network Layer (contd.) Routing
EE 122: Intra-domain routing: Distance Vector
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Presentation transcript:

Computer Networking Intra-Domain Routing, Part I RIP (Routing Information Protocol)

Lecture #9: Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links link cost: delay, $ cost, or congestion level Goal: determine “good” path (sequence of routers) thru network from source to dest. Routing protocol A E D CB F “good” path: typically means minimum cost path other def’s possible

Lecture #9: Routing Algorithm classification Global or decentralized information? Global: all routers have complete topology, link cost info “link state” algorithms Decentralized: router knows physically- connected neighbors, link costs to neighbors iterative process of computation, exchange of info with neighbors “distance vector” algorithms Static or dynamic? Static: routes change slowly over time Dynamic: routes change more quickly periodic update in response to link cost changes

Lecture #9: Distance Vector Routing Algorithm iterative: continues until no nodes exchange info. self-terminating: no “signal” to stop asynchronous: nodes need not exchange info/iterate in lock step! distributed: each node communicates only with directly-attached neighbors Distance Table data structure each node has its own row for each possible destination column for each directly-attached neighbor to node example: in node X, for dest. Y via neighbor Z: D (Y,Z) X distance from X to Y, via Z as next hop c(X,Z) + min {D (Y,w)} Z w = =

Lecture #9: Distance Table: example A E D CB D () A B C D A1764A1764 B D5542D5542 E cost to destination via destination D (C,D) E c(E,D) + min {D (C,w)} D w = = 2+2 = 4 D (A,D) E c(E,D) + min {D (A,w)} D w = = 2+3 = 5 D (A,B) E c(E,B) + min {D (A,w)} B w = = 8+6 = 14 loop!

Lecture #9: Distance table gives routing table D () A B C D A1764A1764 B D5542D5542 E cost to destination via destination ABCD ABCD A,1 D,5 D,4 Outgoing link to use, cost destination Distance table Routing table

Lecture #9: Distance Vector Routing: overview Iterative, asynchronous: each local iteration caused by: local link cost change message from neighbor: its least cost path change from neighbor Distributed: each node notifies neighbors only when its least cost path to any destination changes neighbors then notify their neighbors if necessary wait for (change in local link cost of msg from neighbor) recompute distance table if least cost path to any dest has changed, notify neighbors Each node:

Lecture #9: Distance Vector Algorithm: 1 Initialization: 2 for all adjacent nodes v: 3 D (*,v) = infty /* the * operator means "for all rows" */ 4 D (v,v) = c(X,v) 5 for all destinations, y 6 send min D (y,w) to each neighbor /* w over all X's neighbors */ X X X w At all nodes, X:

Distance Vector Algorithm (cont.): 8 loop 9 wait (until I see a link cost change to neighbor V 10 or until I receive update from neighbor V) if (c(X,V) changes by d) 13 /* change cost to all dest's via neighbor v by d */ 14 /* note: d could be positive or negative */ 15 for all destinations y: D (y,V) = D (y,V) + d else if (update received from V wrt destination Y) 18 /* shortest path from V to some Y has changed */ 19 /* V has sent a new value for its min DV(Y,w) */ 20 /* call this received new value is "newval" */ 21 for the single destination y: D (Y,V) = c(X,V) + newval if we have a new min D (Y,w)for any destination Y 24 send new value of min D (Y,w) to all neighbors forever w X X X X X w w

Lecture #9: Distance Vector Algorithm: example X Z Y

Lecture #9: Distance Vector Algorithm: example X Z Y D (Y,Z) X c(X,Z) + min {D (Y,w)} w = = 7+1 = 8 Z D (Z,Y) X c(X,Y) + min {D (Z,w)} w = = 2+1 = 3 Y

Lecture #9: Distance Vector: link cost changes Link cost changes: node detects local link cost change updates distance table (line 15) if cost change in least cost path, notify neighbors (lines 23,24) X Z Y 1 algorithm terminates “good news travels fast”

Lecture #9: Distance Vector: link cost changes Link cost changes: good news travels fast bad news travels slow - “count to infinity” problem! X Z Y 60 algorithm continues on!

Lecture #9: Distance Vector: Split Horizon If Z routes through Y to get to X : Z does not advertise its route to X back to Y will this solve count to infinity problem? algorithm terminates X Z Y 60 ???

Lecture #9: Distance Vector: Poison Reverse If Z routes through Y to get to X : Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z) will this completely solve count to infinity problem? X Z Y 60 algorithm terminates

Lecture #9: Where Poison Reverse Fails A When link breaks, C marks D as unreachable and reports that to A and B Suppose A learns it first A now thinks best path to D is through B A reports D unreachable to B and a route of cost=3 to C C thinks D is reachable through A at cost 4 and reports that to B B reports a cost 5 to A who reports new cost to C etc... X B C D

Lecture #9: Getting a datagram from source to dest. IP datagram: A B E misc fields source IP addr dest IP addr data datagram remains unchanged, as it travels source to destination addr fields of interest here Dest. Net. next router Nhops routing table in A

Lecture #9: Getting a datagram from source to dest A B E Starting at A, given IP datagram addressed to B: look up net. address of B find B is on same net. as A link layer will send datagram directly to B inside link-layer frame B and A are directly connected Dest. Net. next router Nhops misc fields data

Lecture #9: Getting a datagram from source to dest A B E Dest. Net. next router Nhops Starting at A, dest. E: look up network address of E E on different network A, E not directly attached routing table: next hop router to E is link layer sends datagram to router inside link- layer frame datagram arrives at continued….. misc fields data

Lecture #9: Getting a datagram from source to dest A B E Arriving at , destined for look up network address of E E on same network as router’s interface router, E directly attached link layer sends datagram to inside link-layer frame via interface datagram arrives at !!! (hooray!) misc fields data network router Nhops interface Dest. next

Lecture #9: RIP ( Routing Information Protocol) Distance vector algorithm Included in BSD-UNIX Distribution in 1982 Distance metric: # of hops (max = 15 hops) Distance vectors: exchanged every 30 sec via Response Message (also called advertisement) Each advertisement: route to up to 25 destination nets

Lecture #9: RIP (Routing Information Protocol) Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing table in D

Lecture #9: RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead routes via neighbor invalidated new advertisements sent to neighbors neighbors in turn send out new advertisements (if tables changed) link failure info quickly propagates to entire net poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

Lecture #9: RIP Table processing RIP routing tables managed by application-level process called route-d (daemon) advertisements sent in UDP packets, periodically repeated

Lecture #9: RIP Table example (continued) Router: giroflee.eurocom.fr Three attached class C networks (LANs) Router only knows routes to attached LANs Default router used to “go up” Route multicast address: Loopback interface (for debugging) Destination Gateway Flags Ref Use Interface UH lo U 2 13 fa U le U 2 25 qaa U 3 0 le0 default UG