Phonemics LIN 3201
Phonemics, or Why Phonetic is so hard… You do not hear physical sound directly. If you did, phonetics would be easy. Instead, you perceive all speech sounds through the sound system of your native language(s) and the languages you have studied.
What does that mean?
You perceive speech sounds through structure. When you deal with sound outside of the structure you are used to, it can become confusing and difficult to even perceive a sound.
When you hear human speech sounds, these sounds automatically “trigger” perceptual units in your brain/mind. These units are abstractions and are used to organize and structure the “sounds” of your native language.
The phoneme is the basic unit of organization of sounds in language. The phoneme is an abstract, structural and perceptual unit of speech.
To put another way, when someone utters a physical speech sound to you, that speech sound triggers a phoneme in your mind – you do not “hear” the phonetic distinctions directly. Instead, the sound triggers a perceptual unit and you perceive the sound as that unit.
When native speakers (without formal linguistics training) say they “hear no difference” between two sounds, it is probably because in their language those two sounds trigger the same perceptual unit. Those two sounds belong to the same phoneme.
You will generally not “hear” a difference between two sounds that belong to the same phoneme. You will generally “hear” a difference between two sounds who belong to different phonemes.
Phonemes are used to build words and contrast “sound unit” from “sound unit.”
Classic English Phoneme Example
Key Vocabulary in Phonemics Phoneme – abstract structural and perceptual unit / / Phone – phonetic speech sound, unanalyzed according to phonemic status [ ] Allophone – after analyzing data, the phonetic speech sound that belongs to, and thus triggers, a phoneme [ ] under / /
Key Vocabulary in Phonemics Writing phonemes and the allophones that realize them: / / phoneme (choose one allophone as symbol) [ ] Allophone 1 [ ] Allophone 2 etc. Generally, when there is more than one allophone, each will occur in its own environment – if that is the case, list environment, too
Analyzing Data to Determine Phonemes You analyze phonetic data to determine phonemic status. Phonemic status means how native speakers perceive these sounds, and thus, how these sounds are organized in this language. Do native speakers “hear” a difference and use them contrastively? (allophones of different phonemes – these sounds belong to different phonemes) Do native speakers not “hear” a difference and thus do not use them contrastively? (allophones of the same phoneme – these sounds belong to the same phoneme)
So remember, 2 languages might make use of the same sounds [e] and [i], but organize and perceive those sounds differently. Language A: /e/ /i/ language B: /i/ [e] [i] [e] [i] A: 2 sounds belong to different phonemes, native speakers perceive them as different and they can be used to build differences in words, [e] and [i] belong to different phonemes, /e/ and /i/, respectively B: 2 sounds belong to the same phoneme, native speakers do NOT perceive them as different, they may not be used to build differences in words, [e] and [i] belong to the same phoneme, /i/
That is your goal in phonemic analysis – to determine the perception and organization of sound by a native speaker.
Hardman’s Definition of the Phoneme
Negative Definition /Contrastive Definition Phonemes act to keep words separate. Phonemes make words contrast. A Phoneme is what it is because it is not something else. Perceptional Aspect of Phonemes
2. Positive Definition/ Realization Definition Phonemes are built up of a range of phones that trigger our perception. This definition accounts for physical realization of phonemes. Speech organs builds sounds which trigger phonemes. Physical Realization Aspect of Phonemes
3. Structural Definition Phonemes build the structure of language and are part of the whole phonological structure of a language. Humans have propensity for symmetry in language. There is a linguistic tendency to make use of some phonetic possibilities to make contrasts and to use them consistently. Structural Aspect of Phonemes
Analyzing Data to Determine Phonemes There are four general patterns you will find in your data that help you to determine phonemic status. With extensive data sets, there is a fifth pattern that also appears.
These patterns are built around the definitions of the phoneme itself.
Data Pattern #1 – Minimal Pairs Based on definition: Phomemes are contrastive. When you have two or more sounds, found in identical environments, (transcribed identically except for one sound) that mean different things. Example: [bij] ‘bee’ [phij] ‘pea’/‘pee’ The sounds [b] and [ph] contrast in minimal pairs and thus belong to separate phonemes. [suw] ‘sue’ [zuw] ‘zoo’ The sounds [s] and [z] contrast in minimal pairs and thus belong to separate phonemes.
Data Pattern #2 – Complementary Distribution Based on definition: Phomemes are realized by allophones. This pattern is when you have two or more sounds, phonetically similar in some way, that are found in completely unique and distinct environments; sound A never occurs in the environment of sounds B and C, and vice versa. It appears that these “alternations” are triggered by specific sound environments. AKA: Spiderman/Peter Parker; Superman/Clark Kent phenomenon
Data Pattern #2 – Complementary Distribution, cont. Some General Enviornments & Notations: 1. Word boundaries word initial #_____ word final ______# 2. Before certain sounds; before sound classes ___i, ____s, ____ N, ___ palatals, ___C, ___V 3. After certain sounds; after sound classes i ___, s ____, N ____, palatals ___, C___, V___ 4. Between certain sounds; sound classes i____i, s____s, N___N, pal.___pal., C__C, V__V
Data Pattern #2 – Complementary Distribution, cont. Example: Spanish [deo] ‘finger’ [donde] ‘where’ [naa] ‘nothing’ [pie] ‘3p sing. asks’ [pwee] ‘3p sing. can’ [pared] ‘wall’ [r]= flap (symbol won’t show) Also, [d] = dental Note that phones are phonetically similar Both dental (dental vs. interdental) Both voiced [d] occurs in: elsewhere #___e #___o n___e e___# [] e___o V___V a___a i___e e__e The phones [d] and [] are found in complementary distribution and thus belong to the same phoneme. [d] and [] are allophones of the same phoneme /d/. /d/ [] V_V [d] elsewhere
Data Pattern #3 – Analogous Environments Based on definition: Phomemes are contrastive. This pattern is when you find two sounds in nearly the same environments, but do not have data for a minimal pair. The appearance of these two sounds does not seem to be conditioned by any specific phonetic environments, because they both occur in analogous environments.
Data Pattern #3 – Analagous Environments, cont. Example: Environment of [s] Environment of #___a #____a i___a i_____a i_____a These phones are found in analogous environments and thus belong to different phonemes. These sounds are allophones of different phonemes.
Data Pattern #4 – Free Variation Based on definition: Phomemes are realized by allophones This pattern is when you find two sounds in the same environments, and there does not seem to be a change in meaning. In other words, it appears that the phones can interchange with one another with no effect in meaning. This is usually a result of phonetic distinction that you perceive that is not contrastive in this language.
Data Pattern #4 – Free Variation, cont. Example: English Both of these phones are found in identical environments, and yet, unlike the analogous environments examples, alternation of these phones does NOT create differences in meaning. Thus, both the [p] and the [p] (unreleased) are allophones of, and thus belong to, the same phoneme.
To summarize… To show you have allophones of different phonemes: Minimal Pairs – sounds occur in exactly the same environments – in an IDENTICAL set - AND changes meaning of words Analogous Environments Phones occur in overlapping environments, and in near-identical environments, but word meanings are different Phonemes are contrastive. To show you have allophones of the same phoneme: Complementary Distribution phones occur in unique, separate, individual environments environment of sounds conditions allophone Free Variation Phones occur in the exact same environments or near-identical environments but don’t change meaning Seem to be used interchangeably, or substitute for one another, Phonemes are realized as allophones.